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Abstract

We report analytical and numerical results for delocking ot flux-tlow states i two magneucally coupled annular Josephson
junctions (JJs). 1§ stacks with different damping parameters are considered. An analytical model of” the delocking is
developed tor dense fluxon chains. Analytically predicted and numencally found delocking thresholds are in good agreement.

PACS: 74.80.Dm: 85.25.Cp

1. Introduction

Recently. stacked Josephson junctions (SJI) have
received much attention due to several new cffects
found in such systems. In particular. SIJs were pro-
posed as coherently operating magnetically coupled
oscillators with enhanced power and frequency yield
[ I']. Spectral characteristics of the two-told SJJ have
been investigated numerically | 2], It has been found
that the spread of parameters affects mainly the lock-
ing margins, rather than the spectrum of the output
voltage.

In this work. our objective 1s Lo 1nvestigate in de-
tail the margins of the delocking region between flux-
flow states in two annular magnetically coupled Js.

"Permanent  address:  Institute of  Radio Engineering  and
Electronics, Moscow 103907, Russian Federation.  E-mail
sold@isitel ] .isi.kfa-juelich.de.
= Permanent address: Department of Interdisciplinary Studies,
Faculty of Engineering. Tel Aviv University, Tel Aviv 69978 Israel.
E-mail: malomed @ayalon.eng.tav.ac.1l

We assume that both junctions are biased by the same
do current. while their dissipation constants are dif-
ferent. This situation is relevant for a typical experi-
ment. In fact. the subgap resistances could differ by
as much as one order ol magnitude whercas the ratio
of criucal currents does not exceed 2. It is necessary
to mention that a similar locking/delocking problem
wis considered. both theoretically and experimentally.
i Ref. | 3. However, there are some essential dif-
ferences from our approach: the dissipation constants
were idenucal and only one junction was biased. In
another recent work [4]. synchronization and desyn-
chronization of two Ils operating in flux-tlow regimes
in relatively short hinear coupled junctions was consid-
ered from the viewpoint ol the Fiske-step theory. For
the single fluxon case. the analytical and numerical
analysis of delocking was accomplished in Refl. [5]
for the case of different Swihart velocities of JJs. Due
1o the small value of coupling parameter 4, = 0.051n
Ret. | 3. the authors gave an incorrect interpretation
of the delocked state. In the delocked state fluxons in
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the stack move with velocities ¢ and ¢, that charac-
terize the whole system rather than with velocities ¢
and ¢ that characterize uncoupled JJs. Having a small
A, &y 1s very close to ¢_ and ¢ is very close to ¢ .

The paper is organized as follows. In Section 2, the
analytical model 1s formulated and an equation pre-
dicting delocking points is derived. Results of numer-
ical simulations and their comparison with the model
are presented in Section 3. Concluding remarks are
collected in Section 4.

2. Theoretical model

The theoretical model describing the dynamics of
N-fold stacks of magnetically coupled long Josephson
junctions (LJJ) was developed by Sakai et al. [6].
For (wo weakly coupled junctions, in the standard no-
tation, it takes the form

&) — b —sinedt = —y +atd) - agB. (1)

1]

&% — ¢B —singd® = —y + PP — 29" (2)
where 4 > 0 is the coupling constant, y is the dc¢ bias
current density, and «™® are dissipation constants in
the two junctions. We will develop an analytical ap-
proximation for the case of large fluxon density. A
similar analytical approach was already considered in
Ret. [3]. Here. we assume the same bias currents
but different loss parameters of the JJs. Moreover.
we extend the approach of Ref. [3] to the relativis-
tic case. The most important effect, the decoupling of
the fluxon chains in the junctions, mainly takes place
in the relativistic region. The subsequent comparison
with numerical simulations will show that the analyt-
ical model provides a satisfactory agreement only in
the general relativistic form.

We will consider the case of two fluxon chains
locked in out-of-phase mode. The limiting velocity in
this mode is equal to é_ =&/ /1 + 4. Neglecting the
perturbation term in the r.h.s. of Egs. (1) and (2), one
can use the well-known exact flux-flow solution to the
unperturbed sine-Gordon equation. In the high-density
limit, when the mean magnetic field H = ¢ = ZI?
is a large parameter. the solution can be conveniently
represented by the expansion

sin[{(x —ut — éap)H]
H2(1 —u?) ’
(3)

SN = (x —ut ~&ap)H —

where « (0 < w < 1) is the fluxon chain velocity
assumed to be the same in both JJs, and £4 p are ar-
bitrary constants. We have to mention here, that the
fluxon velocity in (3) is normalized to the modified
Swihart velocity ¢ = é/v/1 + 4.

Following the pattern of Ref. [3], we consider each
fluxon chain as an effective particle with the single
degree of freedom &4 or ég. Our immediate objective
is to derive cquations of motion for these coordinates.
To this end, we notice that the momentum of each
“particle” is

L
Prg =~ / (ﬁ’}'”(bﬁ'“ dv = Hul, (4)
0

L being the length of the junction (L and H are re-
lated according to the periodic boundary condition,
HL = 27N, where N is the number of the flux quanta
trapped in the annular junction, i.e. H is quantized).
The Newton cquation of motion reads that the time
derivative of the momentum is the net force applied to
the particle. In our model, we have three forces: fric-
tion (F,). driving (F,). and coupling (F,) forces.
First of all, it is straightforward to find the friction and
driving forces.

F‘{.}B - 7QA.BR—‘\_B — ~a"\'BHzML, (5)

F,=yHL. (6)

Next. the simplest way to calculate the coupling force
F 5 is using the coupling Hamiltonian H 4 which gen-
erates the coupling terms in Egs. (1) and (2),

I
Hy= -4 /asw'j dv. (7)
o

Substituting the approximation (3) into (7), it is easy
to obtain
Ly, cos[(Ea — EpVH

H,= -Llra—/" LEAE 8
4 2 HX(l —u?)? (8)

Finally, the coupling force F 5 acting on each “particle”
can be obtained from (8) as
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sin[ (&a - ép)H) )
= ';L_!\m[ R . 9
F3 H(l - 5)? )

AR _
M=

To get a stationary solution corresponding to a constant
velocity u. we insert the expressions (5). (6), and
(9) into Newton's equations of motion for the two
“particles”

dPy g AL

AB AB
dr v [:{r + FJ :

In the stationary casc dPa g/ dt =0 and the two New-
on equations amount to

Y= %(’a"\*an)Hu, (1)
sin| (€4 - &) H s
_\———~——\m[ £ {B“ ] =(a" - "1H 0 (1
H(l —u-)-

From a formal point of view., a solution to these
equations exists provided that it produces | sin| (£a ~
(p)HY <0 1. Physically, the point 'sin{ (£a -
&g H] = 1 implies the disappearance of a coupled
state of the two fluxon chains, 1.c.. delocking. Elim-
inating the velocity « from Egs. (10) and (11). we
finally arrive at an inequality which determines the
value of the bias current density at which the svstem
is locked.

at o d

Voo S - 3 A
ad—a®" 2HI1 -4yI i Ho(aM + aB)? )

(12

Taking the equal sign in (12) one gets the expression
tor the eritical value of y when the system switches
from the locked to unlocked state (delocking) corre-
sponding to points A and C in Fig. 1 (see below. It
1s very casy to solve the fifth-degree algebraic equa-
tion (12) numerically. In the next section, we com-
pare the prediction for the critical value of y follow-
ing from this equation with results of direct numerical
simulations of Egs. (1) and (2). It will be shown that
Eq. (12) has two physically relevant solutions. which
implics that the two fluxon chains remain locked at
cither very small or very large values of bias current.
and are delocked in the intermediate current range.

3. Numerical results

Details about the numerical methods used in simu-
lations will be published elsewhere [2]. To simulate
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Frg 1 74 curve of the annular stacked JJ with delocking region.

The parameters of the svstem are. 3= 0.5, o o = 1.5, N = 2,
/=5 Aand Care delocking ponts, B and D are relocking points.

the delocking in the present model, we ook L = 5,

a =01, and the periodic boundary conditions,

Al AR 7
b == v=/ REAY AR

(f)":"H N (/)"\‘H vl - (13)

The number of iluxons N is preserved during simula-
ton due to (13). N defines the (luxon density in each
1) and 1~ equivalent to the applied external magnetic
ticld in the case of lincar geometry. We always choose
cqual fluxon densities Ny = N = N in the junctions.
The pertodic boundary conditions allow us to neglect
Fiske resonances in the system. thus, we can concen-
trate on the flux-flow regimes.

A typical numerically obtained /-V characteristic
is shown in Fig. 1. The current is proportional to y,
and the average voltage is proportional to the fluxon
velocity. One can see that the junctions are locked at
sero driving current. This can be casily understood.
In a statie state. the fluxons in the two junctions repel
cach other (coupling force Fy) and form a sort of tri-
angular array, which corresponds to the locked state.
Applying a small bias current, one makes the fluxon
array move as a whole. With increase of the bias cur-
rent and the corresponding velocity. the difference of
the tricuon forces acuing upon the two chains also
increases. Beyond the decoupling point the coupling
torce Fy between the chains can no longer compen-
sate this difference.

The decoupling point 1s marked by A in Fig. [.
After decouphing, the chains are shding relative to
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each other. However, with further increase of the bias
current, the motion of the decoupled chains becomes
relativistic, i.e. their velocities approach the limiting
{Swihart) velocity ¢ . The velocities are close again,
the friction force difference gets small, and, finally,
the locked state is recovered (point B in Fig. 1). This
explanation of the delocking and relocking is a qual-
itative interpretation of the mathematical formalism
developed in the previous section.

The simulated /-V curve in Fig. | demonstrates a
small-scale hysteresis around the delocking and re-
locking points. The analytical model presented above
does not account for this hysteresis. The delocking
points obtained from (12) correspond to the points A
and C (delocking) rather than B and D (relocking)
in Fig. 1.

In Fig. 1 one can also see an interesting feature on
the /-V curve close to the hysteresis rcgion between
points B and C marked as “collisions”. This is a mode
which is different from viscous sliding of two fluxon
chains rclative to each other. The fluxon chains be-
come less dense in the region near the resonance and
single fluxon-fluxon collisions start to be important.
The fluxon moving with higher velocity in one JJ col-
lides with the slower fluxon from the other JJ. A part
of the kinetic energy is transferred from the fast fluxon
to the slow one which results in a change of velocities
of fluxon chains as a whole. This change of veloci-
tics can be seen as the above mentioned feature in the
[-V curve. These collisions can be clearly seen if onc
simulates a long (L = 20) stack with one fluxon in
each JJ and different damping parameters. Depending
on parameters, the collision region may appear in the
[-V curve. Other interesting modes may be observed
as well for different values of parameters.

The delocking points A and C can be regarded as
zeros of the function f(7y), defined as the Lh.s. of
(12). Fig. 2 shows a typical behavior of the function
f(y) for weak (4 =0.1) and strong (4 = 0.5) cou-
pling. One can see that the function f(y) has either
one or three roots. The range of v, where f(y) < 0,
corresponds to the locked state. while the region be-
tween the first two roots (for 4 = 0.1) corresponds to
the delocked chains. Interestingly, the function f(y)
has a third root which corresponds to the delocking
at very high y. We will not consider this root because
the approximation of the dense fluxon chain does not
work very close to the top of the flux-flow step. In-
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Fig. 2. Typical behavior of function f(y) (12). Continuous curve:
strong coupling with 3 = 0.5 (one root). no delocking region;
dashed curve: weak coupling with 4 = 0.1 (three roots), delocking
region is present. Other parameters: a® = 0.12, a% = 0.1, N = 3.
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Fig. 3. Numerically found dependence of delocking points on the

ratio of the damping parameters o®/aB for different coupling

strengths (symbols), and comparison with analytical prediction
(curves). Each junction contains N =3 fluxons.

deed, due to the relativistic contraction, the fluxon size
reduces and the chain becomes sparse. The numeri-
cal simulations show poor agreement between the top
of the step obtained numerically and the value given
by the third root of f(y). The locking range is much
wider than is predicted by the third root of f(y). If
the coupling 4 is large cnough, the function f(y) has
only one root, which corresponds to the completely
locked fluxon chains at all values of 7.
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Fig. 4 The same as m Fig. 3 but for AN =35

We have performed a series of simulations for dif-
ferent fluxon densities ( with N = 3.5, and 10 trapped
(luxons in L = 5 long annular junction). different cou-
pling strengths (4 = 0.1.0.2.0.3.0.5). and various
ratios of the damping coefficients a*/a® in the two
junctions (from | up to 1.5). The results of simula-
tion for N = 3 are shown in Fig. 3. The analytical
curves for the same parameter sct are shown in this
figure as well. Excellent agreement between the ana-
Ivtical curves and the simulations for both delocking
points is found. The simulated and analytical data tor
the case N = 5 are shown in Fig. 4. We have also per-
formed simulations for N = 10, which qualitatively
showed the same behavior.

One can note that for a® . a® close 1o 1.5 and large
v a small deviation of the analytical model from the
simulation results takes place. This results from the
fact that the fluxon chains are not very dense in this re-
gion due to relativistic contraction. Nevertheless, sim-
ulations give a wider locked region than the analytical
model.

4. Conclusion

We have demonstrated that Eq. 12y derived by
means of the perturbation theory yields a very good
approximation for the two delocking points on the /-V
curves of two magnetically coupled annular Josephson
junctions. Using this equation. one can find a critical

value ot the coupling parameter 4% so that the junc-
uons never delock it 4 o> 4% In this case, the func-
tion f(y) defined above (as the L.h.s of Eq. (12))
has only one root (see Fig. 2). I 4 < 4", a delocking
region exists. and the function f(y) (12) has three
roots (see Fig. 2). At § = 1 the two smallest roots
coincide. so that, at some value of y =", f(y*) =0
and f'(y*) = 0 simultaneously. Solving these cqua-
tions, one obtains the following relation.

R Bt LA

~ 0.286H et o (14)

Using ¢ 14). onc can casily cvaluate the minimum
value of the coupling parameter 4 required to avoid
delocking in the system for given values of a®, a®
and magnetic field (fluxon density) H. The deviation
discussed at the end of Section 3 does not affect this
result because the system locks better than predicted
by the analvucal model.
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