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The design of a qubit based on a single Josephson vortex trapped in a shaped long Josephson
junction is discussed in detail. The vortex potential is formed due to its interaction with an in-
plane magnetic field and a bias current applied to the junction. The profile of the potential is
calculated using a standard perturbation approach. We examine the dependence of the potential
properties on the junction shape and its electrical parameters and discuss the requirements for
observing quantum effects in this system. We have developed and experimentally tested methods
for the preparation and read-out of vortex states of this qubit in the classical regime.

1. Introduction In the past years several types of different superconducting circuits
[1–6] based on small Josephson junctions in the phase or charge regime have been
shown to achieve parameters which are favorable for quantum computation. In Ref. [7],
a qubit based on the motion of a Josephson vortex in a long Josephson junction was
proposed. A major difference from the small Josephson junction qubit proposals where
the effective potential is created by the Josephson or charging energy, is that in the
vortex qubit the potential is formed by the magnetic interaction of the vortex magnetic
moment with an external magnetic field, as described in Ref. [8].
In heart-shaped annular junctions two classically stable vortex states can be arranged,

corresponding to two minima of the potential. While the external field is always applied
in the plane of the long junction, its angle Q and strength h can be varied. The bias
current across the junction can be used to tilt the potential. These parameters allow to
manipulate and control the potential and to read out the qubit state using a zero-vol-
tage critical current measurement. The scheme of readout and preparation of the state
for this type of qubit was already demonstrated in the classical regime as briefly de-
scribed in Ref. [9].
This paper describes details of the calculations necessary to determine the parameter

range for the quantum regime, as well as details on the calculation of the effective
potential for the vortex. An explanation of the implementation of the elementary sin-
gle-bit quantum gates using the two in-plane magnetic field components is given. For
the calculation of the potential a single-vortex perturbation theory approach [10] is
used. Tunneling rates in the quantum regime are determined by numerical diagonaliza-
tion of the Hamiltonian and compared to a WKB calculation.

2. Principle of the Vortex Qubit Josephson junctions, which have a length significantly
larger and a width w smaller than the Josephson penetration depth lJ are called long
junctions. These junctions are described by the phase difference jðqÞ of the two super-
conductors as the continuous degree of freedom along the spatial coordinate q (nor-
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malized to lJ), where 0 < q < l, and l is the length of the junction (normalized to lJ).
A magnetic field threading the junction corresponds to a gradient in the phase difference
along the junction. An electrical field across the junction corresponds to a time deriva-
tive of j. The dynamics of a long Josephson junction is governed by the perturbed sine-
Gordon equation, which is discussed below.
Our experiments deal with long annular junctions. These consist of two stacked

superconducting rings separated by a tunnel barrier. Since the flux in every ring is
quantized, it is possible to realize a situation, in which the difference between the
fluxes in two rings is one flux quantum F0. In this case a vortex of supercurrent carry-
ing this flux quantum is formed along the junction. A resting vortex confines the mag-
netic flux to a characteristic size of lJ. Since a moving vortex corresponds to moving
magnetic flux, a voltage proportional to the speed of the vortex appears across the
junction and can be detected. The capacitive energy proportional to the voltage is
stored in the system. It corresponds to the kinetic energy of a moving particle. It is
therefore possible to consider a vortex as a quasiparticle moving in one dimension.
The junction can be biased by a current across it. A Lorentz-type driving force is

exerted by the bias current on the vortex. The vortex magnetic moment also interacts
with the external field by a magnetic dipole interaction. This yields a possibility to
create a potential for the vortex. The magnetic moment is always directed normal to
the junction. By varying the angle of the junction centerline it is possible to change the
potential energy of the vortex as it moves along the junction.
Using a geometry, which is shown in Fig. 1, it is possible to generate a double-well

potential for a vortex in the junction. We chose a shape, which consists of a semi-circle
of radius R, and two connected arcs, which intersect each other at an angle of 2b. An
external magnetic field h is applied, at an angle Q. The field can be described by the
components hx ¼ h sinQ and hy ¼ h cosQ.
Assuming the vortex to carry a point-like magnetic moment, its stable positions of

minimal magnetic energy can be easily found to be the regions, where the junction is
aligned perpendicular to the field. In reality, the vortex is distributed over a length on
the order of lJ. This changes the potential shape considerably, and may even change its
qualitative features. In the case of the double-well potential in the heart-shaped junc-
tion it may cause the barrier, which separates the two minima, to vanish.
The aim of this paper is to derive the exact effective potential in order to determine

the range of parameters and geometries suitable for experiments in the thermal and
quantum regime. We show that the effective potential for a vortex inside a shaped junc-

tion is a sum of three terms, which depend on
the external bias current, and the two in-plane
field components. These are the three para-
meters which can be controlled during the ex-
periment in order to realize degenerate bistable
vortex states, change the barrier between them,
lift the degeneracy in a controlled way, and, fi-
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Fig. 1. Geometry of the heart-shaped junction, defined
by the two geometrical parameters b and R



nally, read-out the state using a critical current measurement. Based on this approach
we proceed to quantum mechanical calculations and the calculation of the depinning
current.

3. Long Josephson Junction Model Classically, the evolution of the phase difference j
between the wave functions of the two superconducting electrodes forming a long Jo-
sephson junction is described by the sine-Gordon equation

sin ðjÞ ¼ jqq � jtt ; ð1Þ

where the temporal coordinate is denoted by t, normalized to the plasma frequency
w�1

p , discussed below. Subscripts denote partial derivatives.
Adding the terms for the inductive energy, the capacitive energy and the Josephson

energy yields the corresponding Hamiltonian

H ¼
Ðl
0
ð12 j2

q þ 1
2 j

2
t þ 1� cos jÞ dq ð2Þ

with the characteristic energy scale E0, discussed below. The temporal derivative jt

corresponds to the normalized voltage across the junction, the spatial derivative jq

corresponds to the normalized magnetic field in the junction.
Single-vortex solutions of Eq. (1) in a non relativistic approximation for infinitely

long junctions are given by

jðq; q0Þvortex ¼ �4 arctan ðexp ðq� q0 � vtÞÞ ; ð3Þ

where q0 denotes the vortex center of mass and v its velocity normalized to the Swihart
velocity �cc, which is the characteristic velocity for the electromagnetic waves in the junction.
In the case of weak magnetic field and small bias current, the interaction with field

and current can be modeled using perturbation theory. In Ref. [10], a bias current g
(normalized to the critical current) was found to exert a driving force of 2pg on the
vortex. The influence of the external magnetic field on a shaped junction was studied
theoretically [8] and experimentally [11] for a circular shape of the annular junction.
The sine-Gordon equation was discussed previously for annular junctions of small
(2pr < lJ) and large radius (2pr > lJ) in [12]. We use the overlap geometry, which is
known to generate very little self field of the bias current. In [13] we determined ex-
perimentally the self-field effect for circular geometries corresponding to the heart-
shaped junctions by measuring the dependence of the critical current on the angle of
the external magnetic field. Since during the operation of the qubit no current is flow-
ing, we made no attempt to treat the self-field quantitatively. Before we further investi-
gate the more complex junction shapes, we need to define the characteristic scales and
normalizations.

4. Scales and Constants In a long Josephson junction there are three important scales,
which characterize the classical and quantum dynamics of the unperturbed system.
The Josephson length

lJ ¼
F0

2p

ffiffiffiffiffiffiffiffiffiffi
1

L*eJ

s
ð4Þ
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is determined by the inductance L* and the Josephson coupling energy eJ per unit
length in the junction. The distance lJ is the characteristic lateral dimension of a resting
Josephson vortex. The Josephson coupling energy is related to the critical current den-
sity jc as eJ ¼ wjcF0=2p, where w denotes the width of the long Josephson junction.
Small amplitude linear wave solutions of the phase are described by a dispersion

relation. At the wave number k ¼ 0 (a homogeneous oscillation over the whole junc-
tion) the corresponding frequency is the so-called Josepshon plasma frequency wp, gi-
ven by

wP ¼ 2p
F0

ffiffiffiffiffiffi
eJ
C*

r
; ð5Þ

where C* denotes the capacitance of the junction per unit length. The temporal coordi-
nate of Eq. (1) is normalized by w�1

p . The product lJwp ¼ �cc is the Swihart velocity.
All energies are normalized to the characteristic energy

E0 ¼
F0

2p

ffiffiffiffiffiffi
eJ
L*

r
¼ eJlJ : ð6Þ

The energy unit E0 is equal to the Josephson coupling energy of a small Josephson
junction of the area lJw.
The rest energy of a vortex is equal to eight in units of E0, where half the energy is

stored in the Josephson coupling and the other half is stored in the inductive energy. Since
the speed of light equals unity in the normalized units, the rest mass of the vortexm0 ¼ 8.
Applying these normalizations to the Planck’s constant �h, which has the unit of ac-

tion, yields a normalized Planck’s constant �hnorm, given by

�hnorm ¼ �h
wp

E0
¼ �h

2p
F0

� � ffiffiffiffiffiffi
L*

C*

s
: ð7Þ

The normalized Planck’s constant �hnorm does not depend directly on the Josephson cou-
pling energy, but L*, C* and eJ are related to each other through the barrier thickness.

5. Perturbation Theory Approach We apply a perturbation theory approach similar to
that of Refs. [8, 10] and reduce the dynamics of the system to the center of mass mo-
tion of the vortex as with its coordinate q0 being the only degree of freedom.
In the lowest order of perturbation theory it is assumed that the phase gradient pro-

file imposed by the external magnetic field and the phase gradient profile correspond-
ing to a resting vortex do not influence each other, which requires that at least one of
these is assumed to be small. The inductive energy term of Eq. (2) for
jq ¼ jvortex

q þ jext
q yields

Uextðq0Þ ¼
Ðl
0

1
2 ½jvortex

q ðq� q0Þ þ jext
q ðqÞ�2 dq : ð8Þ

Expanding Eq. (8) yields

Uextðq0Þ ¼
Ðl
0

1
2 j

vortex
q ðq� q0Þ2 dqþ

Ðl
0

1
2 j

ext
q ðqÞ2 dq þ

Ðl
0
jvortex
q ðq� q0Þ jext

q ðqÞ dq :

ð9Þ
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Since we are only interested in the depen-
dence of Uextðq0Þ on q0, we can neglect
the first two constant terms which are the
magnetic energy of a resting vortex and
the energy of the external magnetic field
in the junction, respectively. The last term,
which is a convolution of the externally in-

troduced phase gradient with the phase gradient profile of the vortex, is the potential
energy corresponding to the magnetic dipole interaction.
The influence of the bias current g can be taken into account by adding a potential

term corresponding to a constant driving force. This yields the total potential

Uðq0Þ ¼ jvortex
q ðq� q0Þ �q jext

q ðqÞ � g2pq0 ð10Þ

for the vortex, where �q denotes the convolution in q. The effect of the convolution of
the externally introduced phase gradient with the magnetic profile of the vortex is indi-
cated in Fig. 2. The phase gradient (solid line) is induced by a field in y-direction
Q ¼ p=2ð Þ, see heart shaped junction depicted in Fig. 1. While the derivative of the
phase gradient is discontinuous at q ¼ l=2, the resulting potential is smooth at this
point. Furthermore, the distance Dq0 between the minima and the height U0 of the
barrier are diminished by the convolution. In general, all local perturbations are
smoothened to a length of the order of lJ.

6. Effective Potential in Shaped Junctions We will now discuss how a specific geome-
try, like that of Fig. 1, is related to the potential profile for an arbitrary field angle Q.
The phase difference gradients correspond to shielding currents, which flow in the

superconducting electrodes of the junction. Since these shielding currents are orthogo-
nal to the magnetic field, the phase gradient along the junction is proportional to the
scalar product of the normal vector of the junction with the external magnetic field.
This is equivalent to the physical interpretation of the vortex magnetic moment inter-
acting with the external magnetic field. Expanding the scalar product to its (orthogonal)
components

jext
q ðqÞ ¼ nðqÞ � h ¼ nxðqÞ hx þ nyðqÞ hy ð11Þ

yields an equation, in which the phase gradient is linear in each component of the field.
Since also the convolution of the vortex magnetic moment with the external magnetic
field is a linear operation, it is possible to separate the convolution for the calculation
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Fig. 2. Phase gradient (solid line) jext
q ðqÞ intro-

duced by the external magnetic field, the phase
gradient (long dashed) jvortex

q ðq� q0Þ associated
with phase profile of a vortex (shifted to
q� q0 þ 10 for visibility), and the effective po-
tential (short dashed) Uðq0Þ, given by Eq. (8)
with g ¼ 0



of the potential into two components,

jvortex
q ðq� q0Þ �q jext

q

¼ jvortex
q ðq� q0Þ �q nxðqÞ hx þ jvortex

q ðq� q0Þ �q nyðqÞ hy : ð12Þ
We now abbreviate jvortex

q ðq� q0Þ �q nxðqÞ by Ux, and substitute Eq. (12) into Eq. (10).
This yields

Uðq0Þ ¼ Uxðq0Þhx þUyðq0Þhy � g2pq0 ð13Þ
as the total potential for the vortex motion.
We now return to the geometry in Fig. 1. From the symmetry of the heart it can be

seen immediately, that nyðqÞ is symmetric with respect to q ¼ 0 and q ¼ l=2, while nxðqÞ
is antisymmetric with respect to these points. Therefore, also Uyðq0Þ and Uxðq0Þ are
symmetric and antisymmetric, respectively. Uyðq0Þ and Uxðq0Þ are depicted in Fig. 3 for
the junction in Fig. 1, having the normalized length l ¼ 20.
Of special interest is the region at q ¼ l=2, since Uy forms a double-well potential

there, if the radius R is large enough in relation to the Josephson length. The influence
of a change in the Josephson length on the double-well potential is shown in Fig. 4,
where for a heart of the same radius effective potentials are shown using different
Josephson lengths. The distance between the wells and the height of the barrier are
strongly diminished with increasing Josephson length. At a certain critical value of the
Josephson length the barrier ceases to exist for this geometry.

7. Quantum Mechanics of a Vortex The Schrödinger equation for the center of mass
motion of a vortex is given in normalized units by

�i�hnormY ¼ ĤHY ¼ ðT̂T þ ÛUÞY ; ð14Þ
where ÛU denotes the potential energy operator, and

T̂T ¼ @

@q2
�h2norm
16

ð15Þ

corresponds to the kinetic energy operator for a particle of mass m0 ¼ 8. A numer-
ical discretization and diagonalization of ĤH yields the eigenstates, which are shown
in Fig. 5 for w ¼ 0:3 mm, R ¼ 50 mm, jc ¼

1000 A/m2.
The tunnel splitting between the two

lowest energy eigenstates is proportional
to the expected tunneling rate. The nu-
merically calculated values for the tunnel
splitting are shown as points in Fig. 6 and
tunneling rates calculated in WKB ap-
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Fig. 3. The potential for horizontally (Q ¼ 0�)
and vertically (Q ¼ 90�) applied magnetic field



proximation are shown by the solid line. It can be seen, that the tunneling rate can be
tuned within the experimentally accessible field-range by four orders of magnitude.
Applying a small x-component breaks the degeneracy of the potential, since an antisym-

metric potential component will be added. If this component is small, perturbation theory
yields a correction for the energy eigenvalues of the uncoupled states inside each well,

DU ¼ hY j ÛUx jYi hx : ð16Þ

Since Uxðq0Þ ¼ �Uxð�q0Þ, and the states localized in the left/right well are symmetric,
one state is shifted up, while the other state is shifted down in energy.
At low temperatures, the vortex dynamics in the double-well potential is reduced to

that of a two-state system, the Hamiltonian of which can be written as

H ¼ DEðhyÞ sx þ DUsz ; ð17Þ

where DE is the overlap of the
ground states, found by the WKB-
method. It must be noted, that
DEðhyÞ depends exponentially on hy
while DU depends only linearly on hx.
By controlling hx and hy it is possible
to realize all single qubit operations.
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Fig. 4 Fig. 5

Fig. 4. Potential for a single junction, in dependence of the vortex position q0, with different
curves for different lJ

Fig. 5. Calculated lowest energy eigenstates for a junction of w ¼ 0:3 mm. The energy levels are
indicated by the dotted lines, the wave functions are indicated by the dashed lines
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Fig. 6. Tunnel splitting between the states,
according to the energy splitting of the
lowest energy eigenstates



8. Readout and Depinning Current For
the experimental test of the readout proce-
dure in the classical regime [9], we are in-
terested in the depinning current of the
vortex which is an experimentally accessi-
ble parameter. A vortex starts to move,
when the pinning force due to the external
field is compensated by the force exerted
by the bias current. Calculating the deriva-

tive of Eq. (10) yields

Fðq0Þ ¼
@Uðq0Þ
@q0

¼ @Uxðq0Þ
@q0

hx þ
@Uyðq0Þ
@q0

hy � g2p ð18Þ

for the force Fðq0Þ acting on the vortex. The equilibrium positions correspond to a
zero net force. Using Eq. (13), we can write a condition for the equilibrium positions
as

Fxðq0Þ ðhx=hÞ þ Fyðq0Þ ðhy=hÞ ¼ ðg=hÞ 2p ; ð19Þ

where Fx denotes @Uxðq0Þ=@q0.
Solutions of Eq. (19) vanish, if local maxima/minima in the force are exceeded by

g2p. A vortex trapped in one of these stable equilibrium positions will be depinned at
these currents. The corresponding current is therefore called the depinning current
gdep; i, where i is the index, if several stable positions exist. In Fig. 7, a potential without
bias current is shown, together with the corresponding force. Each minimum of the
potential, indicated by an open square, has one corresponding minimum (open circle)
and maximum (solid circle) of the force. For a given angle Q of the external field,
ðhx=hÞ and ðhy=hÞ in Eq. (19) are constant. Therefore, the ratio qdep; i ¼ ðgdep; i=hÞ is
constant for a specific angle of the field.
The dependence of qdep; i on the angle of the external magnetic field can be found

numerically. In Fig. 9, the dependence of qdep; i on the field angle Q is plotted by
two lines for i ¼ 1 and i ¼ 2. We performed a test, if the vortex would be trapped
in the remaining stable positions. This happens if the spatial distance between the
depinning position and the next maximum in the potential is so small, that the vor-
tex does not gain enough kinetic energy to overcome this maximum. In such a case,
the vortex will get retrapped at the remaining stable position. If the current is in-
creased, the vortex is depinned from this remaining position at the corresponding
depinning current. In this case we plotted the latter value of the depinning current
in Fig. 9.
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Fig. 7. Minima of the potential Uðq0Þ (solid line)
are marked by open squares. The minima of the
pinning force (dotted line) are marked by open
circles, the maxima by solid circles



9. Experimental Test We carried out an
experimental test of the preparation and
readout scheme proposed above using the
junction shown in Fig. 8.
Figure 9 shows the measured depinning

current in dependence on the angle Q of
the external magnetic field. We measured
the depinning current of the vortex after a

clockwise and counterclockwise rotation as described in Ref. [9]. The two directions of
rotation correspond to circles and squares in Fig. 9, respectively.
From the dependence of the depinning current on the angle the two ways of prepara-

tion can be associated with the numerically determined values of qdep; i. At Q ¼ 270�,
we find numerically that qdep;1 ¼ qdep;2. This angle corresponds to an antisymmetric po-
tential, which has a symmetric first derivative. Therefore, the maximum values of the
pinning force are identical. In Fig. 9 this theoretically predicted crossing is found in the
experiment. The pinning for state (2) is slightly higher than expected. This small discre-
pancy of qdep; i indicates additional pinning possibly due to inhomogeneities, residual
flux or geometrical reasons.
In the experiment, only at the readout angle Q � 330� the crossover between retrap-

ping in state (2) and depinning from state (1) is observed as numerically predicted. The
crossover from retrapping in state (1) to detection of state (2) shows a large discre-
pancy to the numerical prediction. We attribute the difference between the experimen-
tal and the numerical data in Fig. 9 in the range Q � 45� to 260� to the damping which
has been neglected in the numerical calculation.
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10µm

Fig. 8 (online colour). Optical microscope picture
of the junction used for the experimental test.
Parameters are R ¼ 50 mm, b ¼ 60�, w ¼ 3 mm,
jc ¼ 796 A/cm2
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Fig. 9. Normalized depinning current gdep=h
plotted versus the angle Q of the external field.
Lines correspond to numerical calculation,
squares (clockwise preparation of state, i ¼ 1)
and circles (counterclockwise preparation of
state, i ¼ 2) are the experimentally measured va-
lues



10. Conclusions We demonstrated a preparation and readout scheme for the vortex
qubit in the classical regime and thus verified the existence of bistable states. The ob-
tained experimental results agree well with the numerical calculations. Small discre-
pancy is most probably due to the specific geometry of junction electrodes, which may
cause additional pinning (see Ref. [14]). Another source of it is the neglection of damp-
ing in the numerical calculation.
Using the tools developed, further experimental steps as statistical measurements of

vortex states in the thermal or quantum regime can be performed. Numerical and
WKB calculations show that in sub-micron-width junctions with a low damping one
should be able to observe quantum effects. For the operation of the vortex qubit it is
necessary to control the width and height of the barrier. While the height can be con-
trolled in a wide range by the magnetic field, the distance of the stable minima is deter-
mined during fabrication of the sample, by the Josephson length and the junction geo-
metry.
The macroscopic quantum coherence experiment using a vortex in a long narrow

junction requires production of narrow junctions of well-defined geometry with a pre-
cise control of the critical current density. Thermal activation measurements can exam-
ine, if corrections to the one-dimensional model of the junction are required. By going
to low temperatures, the crossover to the quantum tunneling regime is expected. In this
regime, it should be possible to probe the tunnel splitting by applying microwaves,
which would also allow to determine the quality factor of the system.
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