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Crossovers in the thermal decay of metastable states in discrete systems
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The thermal decay of linear chains from a metastable state is investigated. A crossover from rigid to elastic
decay occurs when the number of particles, the single-particle energy barrier, or the coupling strength between
the particles is varied. In the rigid regime, the single-particle energy barrier is small compared to the coupling
strength, and the decay occurs via a uniform saddle-point solution, with all degrees of freedom decaying
instantly. Increasing the barrier one enters the elastic regime, where the decay is due to bent saddle-point
configurations using the elasticity of the chain to lower their activation energy. Close to the rigid-to-elastic
crossover, nucleation occurs at the boundaries of the system. However, in large systems, a second crossover
from boundary to bulk nucleation can be found within the elastic regime, when the single-particle energy
barrier is further increased. We compute the decay rate in the rigid and elastic regimes within the Gaussian
approximation. Around the rigid-to-elastic crossover, the calculations are performed beyond the steepest-
descent approximation. In this region, the prefactor exhibits a scaling property. The theoretical results are
discussed in the context of discrete Josephson transmission lines and pancake vortex stacks that are pinned by
columnar defects.@S0163-1829~99!10137-1#
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I. INTRODUCTION

The decay of metastable states in systems with one1 or
more degrees of freedom2 ~DOF! has been intensively stud
ied in the last decades.3 The crossover from rigid to elasti
decay4–6 was studied in systems with one and two DOF
using methods known from the analysis of the crosso
from thermal to quantum decay.7–10 In this work we consider
a system withN DOF and investigate crossovers that occ
in its thermal decay from a metastable state while tuning
external parameter.

A system localized in a relative minimum of a potentia
energy surface can escape from the trap due to therma
quantum fluctuations. At high temperatures the decay p
cess is purely thermal, and most probably occurs through
free-energy lowest-lying saddle point that connects two lo
minima. In this paper we study a model where the ene
surface changes upon varying an external parameted.
Above a critical valued* , the saddle point bifurcates int
new lower-lying ones, causing an enhancement of the es
rate G. In the steepest-descent approximationG(d) and its
derivativeG8(d) are continuous atd* , whereas the secon
derivativeG9(d* ) diverges. This behavior can be interpret
in terms of a second-order phase transition,8 and hence is
called crossover of second order.

Experimental measurements concerning the decay
metastable states in dc superconducting quantum inte
ence devices~SQUID’s! were interpreted in terms of
saddle-point splitting of the potential energy.5 This device
consists of a superconducting ring intercepted by two
sephson junctions~JJ’s!. The phase differences across t
junctions play the role of generalized coordinates. The ind
tance of the circuit couples the two phases. By reducing
bias currentI that flows through the system, the decay of t
phases changes from a rigid regime,11–13with the two phases
decaying together as if they were rigidly coupled, to an el
PRB 600163-1829/99/60~13!/9763~12!/$15.00
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tic regime, with the phases decaying independently.5

An interesting question is how such a crossover occur
more complex systems like in a discrete Josephson trans
sion line ~DJTL!, which is a one-dimensional array ofN
parallelly coupled JJ’s. Instead of two DOF, one would th
haveN coupled DOF. Another example of such a system i
stack ofN pancake vortices14 in a layered superconductor i
the presence of columnar defects.15 A vortex pinned by a
columnar defect, but subject to a driving current flowing p
pendicular to the magnetic field can escape from the trap
thermal activation. The open question is then whether a tr
sition from a rigid to an elastic behavior can be found in t
vortex or the DJTL systems, and also if more crossov
inside the elastic regime would arise due to the differ
decay possibilities involving the large number of DOF.
this paper we analyze the crossover in the decay process
to a saddlepoint bifurcation in systems withN.2 DOF. It
turns out that forN53 the saddle points of the potentia
energy can still be solved exactly. For largerN we determine
them perturbatively. Furthermore, we find that forN@1 a
second crossover from boundary to bulk nucleation can t
place in the elastic regime.

The thermal escape rateG th5P exp(2Ua /kBT) is deter-
mined in the rigid and elastic regimes for an arbitrary nu
ber of particles, by assuming an overdamped motion out
weakly metastable state. Far from the saddle point bifur
tion, G th is evaluated within the Gaussian approximation,
cluding the pre-exponential factorP. Close to the crossove
from rigid decay to boundary nucleation, we calculate t
rate beyond steepest descent and find thatP displays a scal-
ing property.

The paper is organized as follows: In Sec. II we introdu
the model that can be applied both to DJTL and to panc
vortices in layered superconductors in the presence of a
lumnar defect. In Sec. III we determine the crossover fr
rigid decay to elastic boundary nucleation and the cor
9763 ©1999 The American Physical Society
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9764 PRB 60THORSTEN DRÖSE AND CRISTIANE MORAIS-SMITH
sponding decay diagram. We show that in the elastic reg
a second crossover from boundary to bulk nucleation
occur. We evaluate the saddle-point solutions and their a
vation energies in the three decay regimes. In Sec. IV
thermal escape rate is calculated. Finally, we discuss
results and draw our conclusions in Sec. V.

II. MODEL

A. Free energy

Let us consider a system ofN degrees of freedomu
5(u0 , . . . ,uN21), each of them experiencing a singl
particle potentialU(un), and interacting with one another vi
spring like nearest-neighbor interactions,

E~u!5
k

2 (
n51

N21

~un2un21!21 (
n50

N21

U~un!, ~1!

wherek is the spring constant. We assume that all the p
ticles are initially situated near a local minimum of the p
tential U. The coordinatesun measure the distance of eac
particle n from this minimum. Close to the local minimum
un50, the single-particle potential can be approximated b
cubic parabola,

U~un!5UBF3dS un

R D 2

22S un

R D 3G . ~2!

Here d!1 is a tunable parameter. The constantsUB and R
are the characteristic energy and length scales, respecti
At un5Rd the single-particle potential has a maximum. T
energy difference between the local minimum and the ma
mum is ŨB5U(Rd)5UBd3.

Among the physical systems that can be described by
~1! are the DJTL’s, see Fig. 1. The potential energy o
system ofN identical JJ’s in the presence of a bias currenI
is

V~w0 , . . . ,wN21!5
EJ

2

2LI c
2 (

n51

N21

~wn2wn21!2

1EJ (
n50

N21 F12cos~wn!2
Iwn

NIc
G . ~3!

Here the phase differences across the JJ’s are given
w0 , . . . ,wN21. The first term in Eq.~3! represents the inter
action energy due to the inductances between the loops.
only the self-inductances of the loops are taken into acco
whereas the mutual inductances are neglected.16 The elastic
constant isk5EJ

2/LI c
2 , whereEJ5(F0/2p)I c is the Joseph-

son energy,I c the critical current of a single junction,L is

FIG. 1. A current biased one-dimensional array of identical p
allelly coupled Josephson junctions, also called a discrete Jos
son transmission line. The relevant degrees of freedom are
phase differenceswn across the junctions.
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the inductance, andF05hc/2e is the flux quantum. The sec
ond term represents the tilted washboard potentials of
driven JJ’s that arise due to the relation between currents
gauge invariant phases across the junctions. If we conc
trate on the experimentally most interesting limit of curren
I close to criticality,NIc2I !NIc , the tilted washboard po
tential can be well approximated by its cubic expansion, a
we can identify E5V with un5wn1Rd/22p/2, UB

54A2EJ/3, R52A2, andd5A(12I /NIc).
Another physical realization of the model described

Eq. ~1! is a stack of ‘‘pancake’’ vortices trapped in a colum
nar defect, which is artificially introduced in a layered sup
conductor. Both the magnetic field that produces the panc
vortices and the columnar defect are perpendicular to
superconducting layers; see Fig. 2. Once a bias currej
5 j ey flows through the layers perpendicular to the magne
field pointing in thez direction, the pancakes will be drive
by the resulting Lorentz force. The corresponding free
ergy reads

F5
« l

2s (
n51

N21

~un2un21!21 (
n50

N21

@Up~un!2~ fL•un!#. ~4!

The displacement of thenth pancake vortex from its equilib
rium position in the columnar defect is now given by a tw
dimensional vectorun5(un,x ,un,y). The first sum in Eq.~4!
models the magnetic and Josephson couplings between
layers by elastic interactions between pancakes in adja
layers.17 Here« l5(«0 /g2)ln(lab/jab) is the elastic constant
«05F0

2/(4plab)
2 is the vortex self energy,g5lc /lab is

the anisotropy ratio of the penetration depthslc andlab , s
is the interlayer spacing, andjab is the in-plane coherenc
length. The second sum contains the columnar defect pinn
potentialsUp ‘‘felt’’ by the single pancakes and the Lorent
force densityfL5F0 j`ez /c, where ez is the unit vector
pointing perpendicular to the planes. The potentialUp is
smooth on the length scalejab with a local minimum at the
center of the defect. An upper estimate for the depth of
potential well is given byUB't«0 ln(R/jab), whereR is the
radius of the columnar defect.15 The parametert denotes the
superconducting layer thickness. In the large current lim
d5A12 j / j c!1 gives a measure of how close the currenj
is to the critical currentj c . Then the sum of the pinning an
the Lorentz part of the free energy is approximately

-
h-

he

FIG. 2. A stack of ‘‘pancakes’’ produced by a magnetic fieldB
applied perpendicular to the layers. The pancakes are couple
each other via magnetic interaction and Josephson currents. A
lumnar defect pins the vortex. When a currentj is flowing through
the system, a Lorentz forcefL acts on the pancakes, reducing th
energy barrier the vortex has to overcome to escape from the de
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UB (
n50

N21 F3dS un,x

R D 2

22S un,x

R D 3

1
3

2 S un,y

R D 2G , ~5!

where we have kept only the terms that are of orderd3. The
terms proportional tod(un,y /R)2 andun,y

2 un,x /R3, that are of
the orderd4, have been neglected. Hence the displacem
in they direction are essentially decoupled from the displa
ments in thex direction. As a consequence, two identic
integrals overun,y appear in the enumerator and in the d
nominator of the decay rate expression,2 which will cancel
each other. For this reason, we will neglectun,y in the fol-
lowing. Renamingun5un,x , we obtain Eq. ~1! with k
5« l /s.

B. Decay rate

Well above the crossover temperatureT0 that separates
the thermally activated decay regime from the quantum t
neling regime,T@T0, the escape of the DOF from the pin
ning potential can be described by a Langevin equationhu̇
1¹E(u)5f(t), assuming that the motion is overdampe
Here h denotes the friction coefficient. If we consider th
resistively shunted model for the DJTL,h is the inverse
shunting resistance. For the vortex problem,h is given by
the Bardeen-Stephen coefficient.18

The white noise random forcef(t) represents a heat bat
at temperatureT. It has ensemble averages^ f i(t)&50 and
^ f i(t) f j (t8)&52hkBTd i j d(t2t8). In the limit of weak meta-
stability, where the barrier is much larger than the therm
energyUa@kBT, the corresponding Klein-Kramers equatio
can be reduced to a Smoluchowsky equation1. The escape
rateG th for the ~quasi!stationary case was determined to b2

G th5
1

h S kBTum0
su

2p D 1/2ES
dN21u8 e2E(u8)/kBT

E
V
dNu e2E(u)/kBT

, ~6!

whereu8PS, uPV, S is the hypersurface in the configura
tion space intersecting the saddle point~s! perpendicular to
the unstable direction~s!, V is the configuration volume oc
cupied by all metastable solutions, andm0

s is the curvature of
the energy surfaceE(u) along the unstable direction evalu
ated at the saddle point.

Solving Eq. ~6! in the steepest-descent approximatio
one can derive the Arrhenius law

G th5P~d! expS 2
Ua~d!

kBT D . ~7!

The activation energyUa is obtained by evaluating the en
ergy functional~1! at the saddle-point configuration, whic
will be done in Sec. III. The computation of the prefactorP
is a more involving task. In this case, we have to analyze
spectrum of the curvature matrix]n]mE at the minimum and
at the saddle point, sinceP describes the contributions to th
rate that stem from the fluctuations around the extrema. A
characteristic valued5d* the saddle bifurcates indicating
crossover from a rigid regime to an elastic regime. In
crossover region, the steepest-descent approximation ca
be applied. However, even beyond the steepest-descen
ts
-

l
-

-

.

l

,

e

a

e
not
ap-

proximation, the form of Eq.~7! remains valid. The calcula
tions of P will be performed in Sec. IV.

III. SADDLE-POINT SOLUTIONS AND THEIR
ACTIVATION ENERGIES

The thermally activated escape from the local minimu
umin5(0, . . . ,0) of thepotential proceeds mainly via th
saddle-point solutionsus of ~1!. These unstable stationar
solutions satisfy¹uE(us)50, and their curvature matrix
H(us) with elements

Hnm~us!5
]2

]un]um
E~us! ~8!

has at least one negative eigenvalue.

A. Saddle-point bifurcation

The saddle pointurs5(Rd, . . . ,Rd), which we call the
rigid saddlepoint (rs), can be readily identified. In Appendi
A we calculate the eigenvalues of a curvature matrix fo
uniform extremal solution. Using Eq.~A10! we find the ei-
genvalues forH(urs),

mn
rs52

6UBd

R2
14k sin2S np

2ND . ~9!

The lowest eigenvaluem0
rs526UBd/R2,0 indicates that

there is at least one unstable direction. It is the only one,d
is smaller than

d* 5
2kR2

3UB
sin2S p

2ND . ~10!

However, whend→d* , the eigenvaluem1
rs56UB(d*

2d)/R2 vanishes. Atd5d* the saddle splits indicating th
existence of anelastic saddle-point configurationues. Be-
low, we will show that for d.d* the energyE(ues) is
smaller thanE(urs)5NŨB . Hence theelastic saddle-point
configurationues instead of therigid one is the most prob-
able configuration that leads to decay. One identifies the
ergy of the most probable configuration with the activati
energyUa . The saddle-point bifurcation can thus be inte
preted as a crossover between two types of decay: the c
over from a rigid regime with an activation energyUa(d
<d* )5NŨB to anelasticregime withUa(d.d* )5E(ues).
The corresponding decay diagram is shown in Fig. 3.

B. Rigid and elastic saddles

We now calculate the elastic saddle-point solutions. Fi
we discuss the appearance of the elastic saddle in the c
over regime for arbitrarily many DOF. The evolution of th
elastic saddle point with increasingd is elucidated by ana-
lyzing the exactly solvable case of three DOF. Far from
crossover, the three-particle result is used to make an an
for the N-particle solutions, which can again be determin
perturbatively.

Near the crossover, we expand the elastic solution aro
the rigid one,ues5urs1Du. Then E is most conveniently
represented in the coordinate system of the principal axi



nd

of

lu

e

a

xi
m
gy

er
ne

he
in

e
le-

c

to
s

ain
ons

a
re-

r o
e
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H(urs), whereE is diagonal in the coordinates up to seco
order. The transformation is achieved by rewritingDu as a
trigonometric polynomial,

un5RdF11 (
k50

N21

qk cosS pk~n11/2!

N D G . ~11!

Here the coordinatesqk are the dimensionless amplitudes
the Fourier modes with a wave numberk that measure the
deviations from the rigid saddlepoint solutionun

rs5Rd. In
this coordinate system, the energy functional reads

E~q!5NŨBF122q0
31

1

2 (
k50

N21

m̃k
rsqk

223q0 (
k51

N21

qk
2

2
1

2 (
k51

N21

qk
2~q2k2q2(N2k)!

2 (
m.k51

N21

qmqk~qm1k1qm2k2q2N2m2k!G , ~12!

where we defineqk[0 for k>N, andq5(q0 , . . . ,qN21). In
the new coordinate system, the dimensionless eigenva
m̃k of the curvature matrix are given bym̃05(R2/UBd)m0

andm̃k5(R2/2UBd)mk for kÞ0. The different prefactors ar
due to transformation~11!. At the rigid saddle one finds

m̃k
rs5

2kR2

UBd
sin2S pk

2ND2323d0,k , ~13!

where d0,k is the Kronecker delta function. Ford,d* ,
where the saddle-point solution is the rigid one withun
5Rd, all the valuesqn50. The second-order expansion ofE
around the rigid saddle point reads

E~q!5NŨBS 11
1

2 (
k50

N21

m̃k
rsqk

2D . ~14!

At the crossover,m̃1
rs vanishes and the quadratic approxim

tion of E becomes independent ofq1. Since large fluctuations
in q1 would not contribute to the free energy, this appro
mation becomes insufficient within the crossover regi
where m̃1

rs!1. Thus, in order to describe the free-ener
contributions of fluctuations inq1 more properly, higher-

FIG. 3. The decay diagram of a system with a small numbe
degrees of freedomN. The solid line and the dots indicate th
crossover from rigid to elastic decay atd5d* as a function ofN.
es

-

-
e

order terms inq1 that arise due to the coupling to the oth
fluctuation coordinates have to be taken into account. O
estimates thatD2E;qnÞ1qmÞ1;qnÞ1q1

2. In comparison, the
third-order termsqkqmqn with m,nÞ1 are much smaller and
hence can be neglected. Sinceq1

2 is only coupled toq0 and
q2, one finds

E~q!5NŨBF11
1

2 (
k50

N21

m̃k
rsqk

223q1
2S q01

q2

2 D G . ~15!

In the following, we define the small parametere5(1
2d* /d)52m̃1

rs/3, which measures the distance from t
crossover. It is positive in the elastic regime and negative
the rigid one. Within the crossover regime,21!e!1. By
solving ¹E50, one finds the extrema. In addition to th
extrema already found in the rigid regime, an elastic sadd
point solutionqes with a singlekink emerges slightly below
the crossover, ford.d* ,

q0
es5

9e

2Dm̃0
rs

,

q1
es5S 3e

2D D 1/2

, ~16!

q2
es5

9e

4Dm̃2
rs

,

qk
es50, k.2,

wherem̃0
rs , m̃2

rs , and

D5218/~2m̃0
rs!29/~4m̃2

rs!53/229/~4m̃2
rs! ~17!

are evaluated at the crossover. Thiselastic solution has a
lower activation energyUa

es'NUBd3@12Ce2(d)# than the

stiff solution. HereC5(54281/m̃2
rs)/32D2 is a positive con-

stant of the order of unity, sincem̃2
rs>6 for N>3. Since both

Ua(d) and its derivativeUa8(d) are continuous, butUa9(d) is
discontinuous atd5d* , the crossover from rigid to elasti
decay is of second order.

In order to illustrate that in our discrete model, close
the crossover,boundarynucleation is the dominant proces
leading to decay in the elastic regime, we will study a ch
consisting of three particles, where the saddle-point soluti
can be determined exactly. The parametere can now take
any value in the interval2`,e!12d* . After substituting
m̃0

rs526, m̃1
rs523e, and m̃2

rs5629e, the free-energy
function reads

E~q0 ,q1 ,q2!53ŨBF123q0
222q0

32
3e

2
q1

21S 32
9e

2 Dq2
2

23q0~q1
21q2

2!2
q2

2
~3q1

22q2
2!G . ~18!

From the extremal condition¹E50 we calculate the extrem
and find that slightly below the crossover in the elastic
gime, onlyqes5(q0

es,q1
es,q2

es), with

f
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q0
es52

2e

3
, ~19!

q1
es5~6 !S 4e

3
2e2D 1/2

, ~20!

q2
es5

e

3
, ~21!

is a possible elastic saddle-point solution. Energetically,
sign in front of q1

es does not have any relevance sinceq1

appears only quadratically inE. It arises due to the existenc
of two degenerate solutions that can mapped into each o
by changing the sign ofq1, which is equivalent to a mirror
symmetry transformation. Inserting the solutions for the el
tic saddleqes into E, we can represent the free energy a
function of e;

E~qes!5ŨB~323e21e3!. ~22!

At e50 one findsE(qes)5E(qrs). For e.0, the value of
E(qes) is smaller than that ofE(qrs). Thus there is a smooth
crossover from the rigidqrs to the elastic configurationqes,
which becomes the most probable one. To summarize,
activation energy of a three-particle chain is given by

Ua
rs53UBd3, ~23!

Ua
es5UB~d313d

*
2 d2d

*
3 !

in the rigid and elastic regimes, respectively. In order to
sualize the most probable configuration leading to decay,
represent the saddle-point solution in the original coordina
u0 ,u1, andu2 as a function of the parameterd. We find that,
for d.d* ,

u0
es5

R

2
@d1d* 2~d212dd* 23d

*
2 !1/2#, ~24!

u1
es5Rd* , ~25!

FIG. 4. The saddle-point solutionsun of a system with three
degrees of freedom as a function of the barrier parameterd/d* . For
d,d* the system escapes rigidly from the local minimum of t
potential via a configuration where all the particles are sitting on
of the barrier,un5urs. At d5d* the saddle splits and the elast
regime is entered ford.d* . With increasingd, u05u0

es ap-
proaches the minimum,u15u1

es5Rd* and the last particleu2

5u2
es→R(d1d* ) is hanging over the maximum of the single

particle potential.
e

er

-
a

he

-
e
s

u2
es5

R

2
@d1d* 1~d212dd* 23d

*
2 !1/2#. ~26!

Note that there exists a second solution with the same
ergy, which can be found by simply exchanging the indice
and 2. The results are displayed in Fig. 4 and illustrated
Fig. 5. By increasing the barrier parameterd aboved* , the
symmetry along the defect is broken as the elastic sad
point solution develops. Whend is raised further, particle 0
approaches the potential minimum atumin50. Particle 1 tries
to adjust between its neighbors. It is dragged toward
minimum by particle 0, but, due to the coupling to particle
there will be a finite distance between the particles 1 and
On the other hand, particle 2 has swapped to the other sid
the maximum.

Far in the elastic regime,d/d* @N2, we can generalize
this picture to arbitraryN. Making the ansatzuN21@uN22
@uN23;0 we find the approximate solutions of¹E50,

uN21
es 'Rd1kR3/6UB , ~27!

uN22
es 'kR3/6UB , ~28!

un<N23
es '0, ~29!

and the equivalent saddleun→uN212n , with an activation
energy

Ua5UBd3S 11
kR2

2UBd D . ~30!

The activation energyUa is displayed in Fig. 6 forN
52, 3, and 4. Note that in this limit the elasticity term
kR2!2UBd and the activation energy resembles that o
single particleUa;UBd3 with a renormalized barrier param

p

FIG. 5. ~a! Rigid saddle-point solutions.~b! Elastic saddle-point
solutions.

FIG. 6. The activation energyUa normalized to the activation
energy of a single particleUBd3 as a function of the barrier param
eterd for various number of particlesN. ForN52, and 3 the results
are exact, forN.3 the activation energy is calculated perturb
tively in the crossover regimed;d* and in the limit of larged. The
activation energy forN52 and the experimental data~full dots! are
taken from Ref. 5.
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eter. This means that for larged the system cannot gai
much energy by nucleating at the boundary and bulk exc
tions become important. The bulk saddles are particle
excitations at positionm with a double kink,

um
bs'Rd1kR3/3UB , ~31!

um61
bs 'kR3/6UB , ~32!

un
bs'0, ~33!

whereum2nu.1 . They have an activation energy

Ua'UBd3S 11
kR2

UBd D , ~34!

which is larger than the activation energy of the elas
boundary saddles. Though energetically not preferable,
N@1 the decay can occur via bulk saddle-point solution
the barrier parameter exceeds a crossover valued.dbs . The
crossover to this new regime will be discussed in more de
in Sec. IV.

IV. PREFACTOR

Having determined the activation energiesUa(d) for the
different regimes, the remaining task is to calculate the p
actor P(d) in Eq. ~7!. Rewritten in terms of q
5(q0 , . . . ,qN21), Eq. ~6! reads

G th5AUBkBTum̃0
su

2pNh2R4d

E
2`

`

dN21q8 e2E(q8)/kBT

E
2`

0

dq0E
2`

`

dN21q9 e2E(q)/kBT

.

~35!

Here q85(q0
s ,q1 , . . . ,qN21) is running alongS and q

5(q0 ,q9) is probingV. In the denominator,q0,0 ensures
that the integration is only performed over stable configu
tions. The additional prefactor arises when transforming
integrals to theq system and taking into account thatm0

s

5UBdm̃0
s/R2.

A. Far from the crossover: Gaussian approximation

In the Gaussian approximation, the integrals in the
merator and in the denominator in Eq.~35! are evaluated by
taking into account only the quadratic fluctuations around
saddle pointqs ,

E~q!'E~qs!1
NŨB

2 (
k50

N21

m̃k
s~qk2qk

s!2, ~36!

and the local minimumqmin ,

E~q!'E~qmin!1
NŨB

2 (
k50

N21

m̃k
min~qk2qk

min!2, ~37!

respectively. Thus one obtains a prefactor
-
e

c
or
if

il

f-

-
e

-

e

P5(
s

UBdum̃0
su

2phR2 S )
n50

N21 m̃n
min

um̃n
su D

1/2

~38!

5(
s

um0
su

2ph FdetH~umin!

udetH~us!u
G1/2

,

where the sum over the saddle indexs takes into account the
contributions of equivalent saddles. Here (m̃n

min)mn
min and

(m̃n
s)mn

s are the~dimensionless! eigenvalues of the curvatur
matricesH(umin) andH(us) evaluated at the local minimum
(qmin)umin and the saddles (qs)us , respectively. In contras
to a system with translational invariance, in the finite sy
tems considered here there is no Goldstone mode of the c
cal nucleus. Hence, well above and below the crosso
wherem1

sÞ0, the evaluation ofP is not corrupted by diver-
gences.

In the rigid regime, we take only the energetically lowe
lying saddle into account, and the sum overs reduces to a
single contribution. With the determinants detH(umin) and
detH(urs) given in Eqs.~A7! and ~A9! in Appendix A, we
find

P~d,d* !5
3UBd

phR2 Fsinh~NV!tanh~V/2!

sin~NṼ!tan~Ṽ/2!
G 1/2

, ~39!

whereV52 arcsinh(v/2) andṼ52arcsin(ṽ/2) with v5ṽ
5A6UBd/kR2. Below the crossover, two equivalent low
energy saddle-point solutions arise, as was discussed in
III. The sum over both saddles gives rise to the factor 2

P~d.d* !52
um0

esu
2ph F detH~umin!

udetH~ues!u
G1/2

. ~40!

In Eqs.~A11! and~A12! we have estimated the determina
detH(ues) and the eigenvaluem0

es, respectively, in the limit
d@d* . We obtain

P~d@d* !'
6UBd

phR2
@11O~d* /d!#. ~41!

As already mentioned in Sec. III, forN@1 a crossover to
a regime can occur, where the decay dominantly occurs
bulk excitations. The number of DOFNbs , where the cross-
over from boundary to bulk nucleation occurs, is found
comparing the corresponding rates according to Eq.~7!. In
the bulk regime, one has approximatelyN equivalent
saddles, and thus with Eqs.~A13! and~A14! the prefactor is
given by

P'N
3UBd

phR2
@11O~d* /d!#. ~42!

Comparing the rates for boundary and bulk nucleation w
Ua given by Eqs.~30! and~34!, andP given by Eqs.~41! and
~42!, respectively, we obtain

dbs'F2kBT ln~N/2!

kR2 G 1/2

. ~43!
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Note, that within our approximations the choice of the s
tem specific parametersN,R,k, and the temperatureT is re-
stricted to values that meet the constraintdbs!1.

B. Near the saddle-point bifurcation: Beyond steepest descent

In the crossover regime, whered→d* and henceueu
→0, the prefactor calculated in the Gaussian approxima
diverges asP;1/Ae due to the vanishing eigenvaluem̃15
23e. The divergence can be regularized by taking into
count the third-order terms inqk in the approximation of
E(q8) around the saddle point in Eq.~35!. Defining the
system-dependent scaling variables

Ps'
@54 tanh~V/2!sinh~NV!#1/2UB

7/4d
*
9/4

p3/2hR3~NkBTD!1/4 tan~p/2N!

and

es5S 16kBTD

9Nd
*
3 UB

D 1/2

,

we show in Appendix B that

P~e!5PsF~e/es!, ~44!

where the functionF is found to be

F~y!55
pAuyu

2
exp~y2!@ I 21/4~y2!2I 1/4~y2!#, d,d* ,

821/4G~1/4!, d5d* ,

pAuyu
2

exp~y2!@ I 21/4~y2!1I 1/4~y2!#, d.d* .

~45!

For largeue/esu the prefactor given in Eq.~44! matches with
the Gaussian result. However, in the crossover regime, w
ue/esu,1, the Gaussian prefactor deviates strongly from
~44!, as expected, since here the Gaussian approximation
comes invalid. Since we considered a metastable situa
wherekBT!UBd3, we havees!1. Hence, the crossover re
gime is extremely narrow,ud2d* u!d* . The functionF
5P/Ps , which is shown in Fig. 7, reflects two interestin
aspects. First, one realizes that the behavior of the rat
smooth at the crossover. The divergences that occur in
Gaussian approximation are regularized by taking into

FIG. 7. Scaling property of the prefactorP as a function ofd
neard* . P/Ps is shown as a function of the distancee from the
crossover. BothPs andes are system-specific scaling variables.
-

n

-

re
.
e-
n,

is
he
-

count higher orders of the fluctuation coordinates. SeconF
can be regarded as a scaling function, where the constanes
and Ps contain the system-specific parameters. The sca
relation is universal in the sense that it does not depend
the details of the considered system. Of course, a const
is that the crossover must be of second order to guarante
validity of the perturbative treatment that we applied. Ho
ever, we have excluded systems with a single-particle po
tial that enforce a first-order transition from the beginnin
Note, that Eq.~44! was found by taking into account only th
cubic terms of the modesq0 , q1, and q2. These long-
wavelength excitations determine the decay process at
crossover, where the discreteness of the system become
relevant. Hence the result can be applied to continuous
tems as well. In fact, a similar crossover function is found
the second-order transition from thermal to quantum de
of a single particle in a metastable state.19 Formally, this
theory can also be used to describe a rigid-to-elastic cr
over in the thermal decay of an elastic line escaping from
homogeneous defect, but withperiodic instead of open
boundary conditions, which we considered here. Note t
the scaling function found in Ref. 19 is different from our
One can indeed show, that the functional form of the scal
function is influenced by the symmetry of the system.

V. DISCUSSIONS AND CONCLUSIONS

We studied the thermal decay of a chain of elastica
coupled particles from a metastable state. The metastab
arises from each of the particles being trapped in a lo
minimum of their single-particle potential. The energy ba
rier that separates the local minimum from energetica
lower-lying ones can be tuned by a barrier parameterd. At
d50 the energy barrier vanishes and the metastability ce
to exist. With increasingd, we find three regimes. For sma
d, the decay occurs mainly via a rigid configuration, whe
all the DOF leave the trap at once. Atd*
52kR2sin2(p/2N)/3UB a saddle-point bifurcation occurs
which marks a crossover from rigid to elastic motion. F
d.d* the decay occurs mainly via boundary nucleatio
However, at even higher values 1@d.dbs.d* a crossover
to bulk nucleation can take place.

Our main goal was to evaluate the thermal decay r
G th5P exp(2Ua /kBT) in the three regimes. This involves th
calculation of the prefactorP and the activation energyUa .
The latter is given by the energyE of the most probable
configuration leading to decay, namely, the lowest-lyi
saddle-point solution. We solved the problem forN53 par-
ticles exactly. Furthermore, we treated the case of an a
trary numberN of DOF perturbatively in the crossover re
gime and deep in the elastic regime. We have shown how
system uses its elasticity to lower the activation energy in
elastic regime. Whereas in the rigid regime the activat
barrier isUa

rs5NUBd3, in the elastic regime near the cros
over Ua

es'Ua
rs(12Ce2), wheree512d* /d andC;1 is a

positive constant that depends on the details of the poten
Increasingd in the elastic regime, the particles first esca
via nucleation at the boundaries with an activation ene
Ua

es;UBd31kR2d2/2, where the first term arises from th
potential energy of the activated particle and the second t
is the elastic energy of the kink that occurs in the bound
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saddle. Due to the imposed free~von Neumann! boundary
conditions, this kind of activation is energetically preferr
compared to bulk nucleation with an activation energyUa

bs

;UBd31kR2d2. Since the bulk saddle consists of tw
kinks, twice the elastic energy is needed to activate a b
nucleation process. However, in large systems, withN@1,
bulk nucleation becomes more probable for 1@d.dbs

5A2kBT ln(N/2)/kR2. Above dbs the many possibilities to
excite a particle somewhere in the bulk, which grow asN in
the prefactorP, outnumber the two possibilities of bounda
nucleation. At larged, the elastic interaction between th
particles becomes less and less important and the activa
energy approaches the energyUBd3 which is needed to ex
cite a single particle over the barrier independently of
others. To discuss the relevant energy scales, we now fi
variables exceptN. The crossover occurs when the numb
of DOF is increased aboveNbs52 exp(kR2d2/2kBT). Hence,
when the elastic coupling is weak and the temperature
high, bulk nucleation already occurs at lower values ofNbs .
The crossover is thus determined by the ratio of elastic
ergy and thermal energy.

Second, we determined the prefactorP. Far from the
rigid-to-elastic crossover, the calculation of the prefactoP
was done in Gaussian approximation both in the rigid and
elastic regimes. Near the crossover, the Gaussian approx
tion breaks down due to a diverging integral, which is cau
by a vanishing eigenvalue of the curvature matrix. By tak
into account higher orders in the fluctuation coordinates,
remove the divergence and obtain a smooth behavior of
rate at the crossover. The prefactor of the rate exhibit
scaling propertyP/Ps5F(e/es). The functionF is universal,
but depends on the symmetries of the model. The sca
parametersPs andes are system-specific constants.

At the saddle-point bifurcationUa(d), Ua8(d), P(d),
P8(d), andP9(d) are continuous, whereasUa9(d) is discon-
tinuous. HenceG th(d) andG th8 (d) are continuous, butG th9 (d)
is discontinuous. InterpretingUa as a thermodynamic poten
tial, one easily sees the analogy between the crossove
scribed here and a second-order phase transition. This a
ogy becomes even clearer when the integral in
enumerator in Eq.~6! is interpreted as the reduced partitio
sum over the DOF transverse to the unstable direction. N
that close to the crossover the discrete structure of the m
becomes unimportant, this kind of crossover can also be
found in continuous systems.20–22 The question arises
whether first-order-like transitions could occur also in t
thermal decay of elastic chain systems. As in the crosso
from thermal to quantum decay8,23 the type of the crossove
depends crucially on the shape of the single-particle poten
U(un). For a cubic parabola as is discussed in this work,
crossover is of second order. However, one could imag
other physical systems where the single-particle potential
a form that causes a first order transition.

The discrete model that we have used here is quite g
eral. In the following we will discuss the application of th
theory to two physical situations, the dynamics of the pha
in DJTL’s and the thermal creep of pancake vortices in l
ered superconductors with columnar defects.

DJTL’s are parallel coupled one-dimensional Josephs
junction arrays, and theN DOF in this case are the phas
lk
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is
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n
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differences across each of theN Josephson junctions. In cur
rent driven DJTL’s, metastable states occur when the D
are trapped in a local minimum of the tilted washboard p
tential common to these systems. ForN52, the problem
reduces to the decay of the phases in a current-biase

SQUID.4–6 Both rigid decay,13 where the two phases behav
as a single one, and the elastic case,5 where the two phase
decay one after another, were experimentally observed
the continuous limit,N→`, the system becomes identical
a long JJ. The rigid-to-elastic crossover occurs21,22 when the
junction lengthLJ becomes of the order of the Josephs
length LJ;plJ . Here, we analyzed a model for a DJTL
that provides a system to study the intermediate case of
cay from a metastable state with a finite number of DOF.
experimental investigation of the rigid-to-elastic crossov
requires that the currentI can be driven through the cross
over currentI * 5NIc(12d

*
2 ). An orientation for the choice

of the system parameters can be obtained by compar
with the dc SQUID,5,13 noting that I * 2NIc

}h2c2/(e2L2I c
2N4). A systematic experimental study of th

rigid-to-elastic crossover as a function of the system para
etersL, I c , andN is still lacking and would be highly de
sirable. A remaining question was, if additional crossov
occur in systems with a large number of DOF. In addition
the rigid-to-elastic crossover due to a saddle-point bifur
tion of the potential energy, we find that in systems w
largeN a second crossover from boundary to bulk nucleat
can take place. DJTL’s with a large number of DOF offer t
possibility to observe such a crossover by varying syste
specific parameters or the temperature.

Let us now discuss our theory in the context of a sin
stack of pancake vortices trapped in a columnar defect
layered superconductor. In the presence of a current densj
that flows within the layers, the vortices are driven by t
resulting Lorentz force. Once thermally activated from t
defect, the pancake stack starts to move through the sam
until it is trapped by another defect. The resulting motion
called thermal vortex creep. A typical example for a layer
system is a high-temperature superconductor~HTSC!. A
HTSC like YBCO is characterized by an anisotropyg;5,
and the ratio of the penetration depth to the coherence le
is lab /jab;100. The distance between the layers and th
thickness ares;t;jab , and the defect radius isR;2jab .
In order to observe the transition from rigid to elastic dec
experimentally, the ratio (j c2 j * )/ j c.0 must be sufficiently
large. However, substituting the defect energyUB
;t«0 ln(R/jab) and the elastic energy« lR

2/s, with « l

5(«0 /g2)ln(lab/jab), into (j c2 j * )/ j c5d
*
2 , one finds that

even in systems with low anisotropy and a small number
layers (j c2 j * )/ j c,1022, indicating that the phenomeno
could hardly be observed experimentally in high-Tc super-
conductors sincej * is very close toj c . Thus, for large cur-
rents j c2 j ! j c as considered here, the vortex system tu
out to be mainly in the elastic regime where the layer
structure of the material is important. Then, the activat
barrier Ua is of the order of the single particle barrie
UB(12 j / j c)

3/2, which can be interpreted as a vortex cre
induced by the escape of individual pancakes from the
lumnar defect.24,25 This ‘‘decoupling’’ regime can be also
entered from the low current half-loop regimej ! j c , when



o

he
ve
ll

ab
th
it

-
o

tu
-

va
in

s

ha
-

e
s

f

for
re

PRB 60 9771CROSSOVERS IN THE THERMAL DECAY OF . . .
the width of the bulk critical nucleus becomes of the order
the layer separation.17 We find that at low temperaturesT the
thermal creep is induced by boundary~surface! nucleation. It
would be interesting to investigate experimentally if t
crossover from bulk to surface nucleation might be obser
in thin layered samples. In sum, we calculated analytica
the creep rate for coupled particles trapped in a metast
state and found that an interesting behavior arises from
interplay between elasticity, pinning, discreteness, and fin
size effects.
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APPENDIX A: DETERMINANT AND EIGENVALUES
OF THE CURVATURE MATRIX

1. Recurrence relation for the Hessian matrix

As was shown in Sec. IV, the prefactorP of the thermal
decay rate is a function of the determinant and the eigen
ues of the curvature matrix evaluated at the relative m
mum and the saddle points, respectively; see Eq.~38!. The
curvature or Hessian matrixHN with matrix elements
Hnm(u0)5]n]mE(u0) determines the nature ofE at the ex-
tremumu0. If all eigenvalues ofHN(u0) are negative~posi-
tive!, u0 is a relative maximum~minimum!. If some of the
eigenvalues are positive and some are negative, thenu0 is a
saddle point. ForE(u0) with N>3, the Hessian matrix read

HN~u!5S ]0
2E~u! 2k 0 ••• 0 2ak

2k � � 0

0 � � � A

A � � � A

0 � � 2k

2ak 0 ••• 0 2k ]N21
2 E~u!

D .

In the case of open boundary conditionsa50, the diagonal
elements are given by

]n
2E~u!5H k1U9~un!, n50,N21

2k1U9~un!, 0,n,N21.

In the discussion that follows, we introduce

DN5det
N S 11x0 21 0 ••• 0

21 21x1 21 ••• A

A � � � A

A � � 21xN22 21

0 ••• 0 21 11xN21

D ,

~A1!

which is used to calculate both the determinant and the c
acteristic polynomial ofHN . For example, in order to calcu
f

d
y
le
e

e-

.
-

l-
i-

r-

late the determinant of the normalized HessianHN /k for N
.4, one setsxn5U9(un)/k. Below, we will derive a recur-
rence relation, which is used to determineDN in some spe-
cial cases.

By shifting the last column to the first and then lifting th
bottom row to the top, one can rewrite the determinant a

DN5det
N S 11xN21 0 0 ••• 0 21

0 11x0 21 0 ••• 0

0 21

A 0

0 A AN22

21 0

D ,

where the (N22)3(N22) matrix AN22 is given by

AN225S 21x1 21 0 ••• 0

21 21x2 21 . . . A

0 � � � 0

A � 21 21xN23 21

0 ••• 0 21 21xN22

D .

In the following, we will consider the case wherex15•••

5xN225x. Note thatx0 andxN21 can be arbitrary.
ExpandingDN , we find withGn5detAn

DN5~11xN21!@~11x0!GN222GN23#

2~11x0!GN231GN24 . ~A2!

Expanding the determinantGn according to the last row o
An , one finds the recursive relation,26 Gn5(21xn)Gn21
2Gn22 that can be rewritten as a difference equation

~Gn2Gn21!2~Gn212Gn22!2xnGn2150. ~A3!

The initial conditions are given by the determinantsG1 and
G2:

G1521x,

~A4!

G25~21x!221.

For 2<N<4, we can use the recurrence relations forGn , if
we defineG051, G2150, andG22521.

2. Uniform case

The solution of these difference equations is possible
special cases. We now analyze the uniform case whex
5x05•••5xN21. Then Eq.~A2! simplifies to

DN5~11x!2GN2222~11x!GN231GN24 . ~A5!

a. Determinant at the relative minimum, x>0

We first discuss the case of the local minimumu5umin ,
where x5v2.0. Imposing the initial conditions given by
Eq. ~A4!, one obtains a solution26 of Eq. ~A3!,
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GN21
min 5

sinh~NV!

sinhV
, ~A6!

where

sinh
V

2
5

v

2
.

Using Eqs.~A5! and ~A6!, we obtain

DN
min5v2GN21

min 52 tanhS V

2 D sinh~NV!. ~A7!

b. Determinant at the rigid saddle, x<0

In the same way as for the local minimum, one obta
DN at the rigid saddleu5urs but now with negativex5

2ṽ2,0. One finds

GN21
rs 5

sin~NṼ!

sinṼ
,

where

sin
Ṽ

2
5

ṽ

2
, ~A8!

and hence

DN
rs52 tanS Ṽ

2
D sin~NṼ!. ~A9!

c. Eigenvalues

The eigenvalues ofHN are found by evaluating the root
of the characteristic polynomial, det(HN2mI )50. We have
again a determinant of the form of Eq.~A1!, but now with
xn5U9(un)/k2m/k, such that we can defineDN(m)
5k2N det(HN2mI ). Using Eq.~A9! we find that the roots
where DN(m)50 are given by Ṽm5mp/N, where m

50, . . . ,N21. Inserting Ṽm into Eq. ~A8! yields ṽm

52 sin(Ṽm/2); henceDN(mm)50 for

mm54k sin2S mp

2N D1U9~u0!, ~A10!

which are the eigenvalues ofHN(u0) for a given uniform
extremal solutionu05(u0 , . . . ,u0).

3. Nonuniform case

Approximate solutions for the determinant and the eig
values can be obtained deep in the elastic regime,d/d* @1.

a. Elastic boundary saddle„dbs>d@d* …

For the elastic boundary saddle-point configurations
tained in Eqs.~27!–~29!, to highest order ind/d* one finds
that U9(u0)5•••5U9(uN23)'6UBd/R2, U9(uN22)
'6UBd/R222k, and U9(uN21)'26UBd/R222k. With
xn5U9(un)/k one obtains for the determinant up
O(dN22):
s

-

-

DN
es'~11xN21!~21xN22!~11x0!GN23

min . ~A11!

The ratioDN
min/DN

es, which is needed to calculate the prefa
tor in the elastic regime is found to be

DN
min

DN
es

5212
kR2

3UBd
1O@~d* /d!2#.

To calculate the eigenvalues, we set againxn
5U9(un)/k2m/k. The characteristic polynomialDN(m) is
now up toO(dN22), given by

DN~m!'~11xN21!~21xN22!~11x0!GN23~m!.

Thus, to lowest order ind, we find that the smallest eigen
value is

m0
es'52k2

6UBd

R2
. ~A12!

b. Elastic bulk saddle„d>dbs…

For the elastic bulk saddle-point configurations obtain
in Eqs.~31! and~32! to highest order ind/d* one finds for a
double kink situated atm, U9(um)'26UBd/R224k,
U9(um61)'6UBd/R224k, and for un2mu.1, U9(un)
'6UBd/R2. With xn5U9(un)/k and using periodic bound
ary conditions, the determinant is approximately given by

DN
bs'~21xm11!~21xm!~21xm21!GN23

min .

The ratioDN
min/DN

bs is

DN
min

DN
bs

5212
4kR2

3UBd
1O@~d* /d!2#. ~A13!

The characteristic polynomialDN(m) is now up to
O(dN22) given by

DN~m!'~21xm11!~21xm!~21xm21!GN23~m!,

wherexn5U9(un)/k2m/k. Thus, to lowest order ind, we
find that the smallest eigenvalue is

m0
bs'522k2

6UBd

R2
. ~A14!

APPENDIX B: PREFACTOR IN THE CROSSOVER
REGIME

1. Rigid regime „d&d* …

For d→d* , both the eigenvaluem1
rs and the determinan

DN
rs vanish. Hence the Gaussian integral containingm1

rs in
Eq. ~38! diverges, and third-order terms inq1 have to be
taken into account. In the rigid regime, the third-order e
pansion ofE in q1 is given by Eq.~15!. The contributions to
P of all degrees of freedom exceptq1PS are found by
Gaussian integration:
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P5
UBd

2phR2 S um̃0
rsu)n50

N21m̃n
min

)n52
N21m̃n

rs D 1/2S NUBd3

2pkBTD 1/2

3E
2`

`

dq1 expF2
NŨB

2kBT
~m̃1

rsq1
21Dq1

4!G . ~B1!

In the following we first derive an approximate expressi
for )m̃n

min/)nÞ1m̃n
rs and then evaluate the remaining integ

over q1.
For the calculation of the product term we use the relat

)m̃n
min/)nÞ1m̃n

rs5m̃1
rsDN

min/DN
rs . Let us analyzeDN

rs for m̃1
rs

close to zero. Recall that

ṽ252
U9~u0!

k
54 sin2S p

2ND2
m1

rs

k
.

Inserting this expression into Eq.~A8! in the limit of small
m1

rs , we find

Ṽ'
p

N
2

m1
rs

2ksin~p/N!
,

such that, to lowest order inm1
rs ,

sin~NṼ!'
Nm1

rs

2k sin~p/N!

and

tanS Ṽ

2
D'tanS p

2ND .

Hence

m̃1
rs

DN
min

DN
rs

52
4k

N
cos2S p

2ND tanhS V

2 D sinh~NV!.

The integration overq1 yields

E
2`

`

dq1 expF2
NŨB

2kBT
~m̃1

rsq1
21Dq1

4!G
5

1

2
Am̃1

rs

D
expFNŨB~m̃1

rs!2

16kBTD
GK1/4FNŨB~m̃1

rs!2

16kBTD
G ,

~B2!

where D as defined above in Eq.~17! arises during the
Gaussian integrations overq0 and q2 . K1/4 is the modified
Bessel function. We make the substitutionm̃1

rs523e. After
defining
l

n

Ps5S UB
2d2um̃0

rsu)n50
N21m̃n

min

8p3h2R4)n52
N21m̃n

rs D 1/2S Nd3UB

kBTD D 1/4

'
@54 tanh~V/2!sinh~NV!#1/2UB

7/4d
*
9/4

p3/2hR3~NkBTD!1/4 tan~p/2N!
~B3!

and

es5S 16kBTD

9Nd
*
3 UB

D 1/2

, ~B4!

which are constants to leading order ine, we obtain the
prefactor of the rate for the rigid region of the crossov
regimed&d* :

P~e!5
pPs

A2
AU e

es
UF I 21/4S e2

es
2D 2I 1/4S e2

es
2D GexpS e2

es
2D .

~B5!

2. Elastic regime„d*d* …

In the elastic regime near the crossover, wheree*0, we
expandE(q) around the perturbative elastic saddle-point s
lution ~16!,

E~q!5E~qes!1 1
2 E (2)~$jk%!1 1

6 E (3)~$jk%!,

whereE (2) and E (3) contain the terms of second and thi
order, respectively, andjk5qk2qk

es are the fluctuations
around the elastic saddle point. By introducing the shif
fluctuation coordinates formÞ1,

ĵm5jm1
2q1

esj1Am

m̃m
rs

,

with A0523, A252 3
2 , andAi .250, we find, for the qua-

dratic part to leading order ine,

E (2)522m̃1
rsj1

21 (
mÞ1

m̃m
rsĵm

2 .

Note thatm̃m
rs are the dimensionless eigenvalues evalua

at therigid saddle-point configuration. Within the crossov
regime, to leading order ine, the eigenvalues at the elast
saddle-point solutionm̃ iÞ1

es 5m̃ iÞ1
rs are independent ofe, ex-

cept m̃1
es522m̃1

rs52e/3. The higher-order contributions t
the expansion read

1

6
E (3)5S (

mÞ1
AmĵmD j1

212Dq1
esj1

3 .

Transforming the fluctuation coordinates a second time,
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j̃mÞ15 ĵm1
Am

m̃m
rs

j1
2 ,

j̃15j11q1
es,

we find

E~q!5E~qes!1
1

2 (
mÞ1

m̃m
rsj̃m

2 1
D

2
@ j̃1

22~q1
es!2#2.

By using (q1
es)252m1

rs/2D53e/2D, we evaluate the inte
grals as in the previous paragraph,27
H.

z.

rn
,

ev
E
2`

`

dj̃1expH 2
D

2kBT
@ j̃1

22~q1
es!2#2J

5
p

2A2
AUm̃1

rs

D
UH I 21/4F ~m̃1

rs!2

16kBTD
G

1I 1/4F ~m̃1
rs!2

16kBTD
G J 3expF2

~m̃1
rs!2

16kBTD
G , ~B6!

whereI 1/4 andI 21/4 are modified Bessel functions. The pre
actor of the rate for the elastic regimed*d* in the crossover
region then reads

P~e!5
pPs

A2
A e

es
F I 21/4S e2

es
2D 1I 1/4S e2

es
2D GexpS e2

es
2D .

~B7!
,
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