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The thermal decay of linear chains from a metastable state is investigated. A crossover from rigid to elastic
decay occurs when the number of particles, the single-particle energy barrier, or the coupling strength between
the patrticles is varied. In the rigid regime, the single-particle energy barrier is small compared to the coupling
strength, and the decay occurs via a uniform saddle-point solution, with all degrees of freedom decaying
instantly. Increasing the barrier one enters the elastic regime, where the decay is due to bent saddle-point
configurations using the elasticity of the chain to lower their activation energy. Close to the rigid-to-elastic
crossover, nucleation occurs at the boundaries of the system. However, in large systems, a second crossover
from boundary to bulk nucleation can be found within the elastic regime, when the single-particle energy
barrier is further increased. We compute the decay rate in the rigid and elastic regimes within the Gaussian
approximation. Around the rigid-to-elastic crossover, the calculations are performed beyond the steepest-
descent approximation. In this region, the prefactor exhibits a scaling property. The theoretical results are
discussed in the context of discrete Josephson transmission lines and pancake vortex stacks that are pinned by
columnar defectd.S0163-182609)10137-1

I. INTRODUCTION tic regime, with the phases decaying independehtly.
An interesting question is how such a crossover occurs in

The decay of metastable states in systems with @ame more complex systems like in a discrete Josephson transmis-
more degrees of freeddniDOF) has been intensively stud- sion line (DJTL), which is a one-dimensional array of
ied in the last decadésThe crossover from rigid to elastic parallelly coupled JJ's. Instead of two DOF, one would then
decay® was studied in systems with one and two DOF byhaveN coupled DOF. Another example of such a system is a
using methods known from the analysis of the crossovestack ofN pancake vorticé in a layered superconductor in
from thermal to quantum decdy°In this work we consider the presence of columnar defeltsA vortex pinned by a
a system withN DOF and investigate crossovers that occurcolumnar defect, but subject to a driving current flowing per-
in its thermal decay from a metastable state while tuning apendicular to the magnetic field can escape from the trap by
external parameter. thermal activation. The open question is then whether a tran-

A system localized in a relative minimum of a potential- sition from a rigid to an elastic behavior can be found in the
energy surface can escape from the trap due to thermal aortex or the DJTL systems, and also if more crossovers
quantum fluctuations. At high temperatures the decay promside the elastic regime would arise due to the different
cess is purely thermal, and most probably occurs through théecay possibilities involving the large number of DOF. In
free-energy lowest-lying saddle point that connects two locathis paper we analyze the crossover in the decay process due
minima. In this paper we study a model where the energyo a saddlepoint bifurcation in systems with>2 DOF. It
surface changes upon varying an external paraméter turns out that forN=3 the saddle points of the potential
Above a critical values, , the saddle point bifurcates into energy can still be solved exactly. For largéwe determine
new lower-lying ones, causing an enhancement of the escapleem perturbatively. Furthermore, we find that fde-1 a
rateI'. In the steepest-descent approximatlofy) and its  second crossover from boundary to bulk nucleation can take
derivativel'’ (5) are continuous ad, , whereas the second place in the elastic regime.
derivativel'” (8, ) diverges. This behavior can be interpreted The thermal escape rale,=P exp(—U,/kgT) is deter-
in terms of a second-order phase transificmd hence is mined in the rigid and elastic regimes for an arbitrary num-
called crossover of second order. ber of particles, by assuming an overdamped motion out of a

Experimental measurements concerning the decay ofieakly metastable state. Far from the saddle point bifurca-
metastable states in dc superconducting quantum interfetion, I'y, is evaluated within the Gaussian approximation, in-
ence devices(SQUID’s) were interpreted in terms of a cluding the pre-exponential fact. Close to the crossover
saddle-point splitting of the potential energyhis device from rigid decay to boundary nucleation, we calculate the
consists of a superconducting ring intercepted by two Jorate beyond steepest descent and find Ehdisplays a scal-
sephson junctiongJJ's. The phase differences across theing property.
junctions play the role of generalized coordinates. The induc- The paper is organized as follows: In Sec. Il we introduce
tance of the circuit couples the two phases. By reducing théhe model that can be applied both to DJTL and to pancake
bias current that flows through the system, the decay of thevortices in layered superconductors in the presence of a co-
phases changes from a rigid regife*with the two phases lumnar defect. In Sec. lll we determine the crossover from
decaying together as if they were rigidly coupled, to an elasrigid decay to elastic boundary nucleation and the corre-
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FIG. 1. A current biased one-dimensional array of identical par-
allelly coupled Josephson junctions, also called a discrete Joseph-
son transmission line. The relevant degrees of freedom are the

phase differences, across the junctions. FIG. 2. A stack of “pancakes” produced by a magnetic figld

. . . . . applied perpendicular to the layers. The pancakes are coupled to
sponding decay diagram. We show that in the elaSt'C. r€gIMEach other via magnetic interaction and Josephson currents. A co-
a second crossover from boundary to bulk nucleation cafmnar defect pins the vortex. When a currgi flowing through

occur. We e\_/alugte the saddle-point sol_utions and their actihe system, a Lorentz fordg acts on the pancakes, reducing the
vation energies in the_ three decay regimes. In S'GC- IV th@nergy barrier the vortex has to overcome to escape from the defect.
thermal escape rate is calculated. Finally, we discuss our

results and draw our conclusions in Sec. V. the inductance, and,=hc/2e is the flux quantum. The sec-

ond term represents the tilted washboard potentials of the

Il. MODEL driven JJ's that arise due to the relation between currents and

A. Free energy gauge invariant p_hases across t_he junc.tion.;. !f we concen-
trate on the experimentally most interesting limit of currents

Let us consider a system df degrees of freedomu | ¢j556 tg criticality,NI,— I <NI., the tilted washboard po-

=(Up, ... ,Uuy-1), each of them experiencing a single- toniial can be well approximated by its cubic expansion, and
particle potential (u,), and interacting with one another via \yo can identify &=V with u,= @, +R&/2— 72, U
spring like nearest-neighbor interactions, — 4\2E,/3, R=2:2, ando— (1”_|/N“| ) + B
1 3 c/-
N-1 N-1 Another physical realization of the model described by
g(u)zf > (Uuy—up_1)?+ > U(uy), (1)  Ea.(1) is a stack of “pancake” vortices trapped in a colum-
2 q=1 n=0 nar defect, which is artificially introduced in a layered super-

where« is the spring constant. We assume that all the IOarg:onductor. Both the magnetic field that produces the pancake

ticles are initially situated near a local minimum of the po- vortices and the columnar defect are perpendicular to the

tential U. The coordinates), measure the distance of each iu.perggcvdsut%trlgg lﬁ){ﬁgasgg Flegr. e?n dciz:rllﬁgr ?o t;)r;aesr::nrneer;itc
particle n from this minimum. Close to the local minimum . )& Tlows fhroug > 1ayers perp . 9
field pointing in thez direction, the pancakes will be driven

un=0, the single-particle potential can be approximated by %y the resulting Lorentz force. The corresponding free en-

cubic parabola,
ergy reads
s
R R

Here 6<1 is a tunable parameter. The constadts and R
are the characteristic energy and length scales, respectively.

At u,=RJ the single-particle potential has a maximum. TheThg gisplacement of theth pancake vortex from its equilib-
energy g|fference between the local minimum and the maxiy;;m position in the columnar defect is now given by a two-
mum isUg=U(RS)=Ugs> dimensional vectou,= (un .Uy ). The first sum in Eq(4)
Among the physical systems that can be described by Egnodels the magnetic and Josephson couplings between the
(1) are the DJTL’s, see Fig. 1. The potential energy of alayers by elastic interactions between pancakes in adjacent
system ofN identical JJ's in the presence of a bias curtlent layers!” Here s, = (go/2)IN(\ap/éxp) is the elastic constant,

. (2

e N1 N-1
Foot 3 (Un=Un )%+ 3 [Up(up)—(fLoup)l. @)
n=1 n=0

U(un)zuB[sa

1S go=D5/(4m\,p)? is the vortex self energyy=»\./\,p, is
> N-1 f[he ani'sotropy ratio of the pene‘gration 'depmsand Nap, S
V( )= J S (- 2 is the interlayer spacing, angl, is the in-plane coherence
®0, .- sPN-1 2L12 i1 Pn Pn-1 length. The second sum contains the columnar defect pinning

potentialsU, “felt” by the single pancakes and the Lorentz

"t lon force densityf, =®, j/\e,/c, whereeg, is the unit vector
+EJ[§O 1—C0€(<Pn)—N—|c - (3 pointing perpendicular to the planes. The potentig) is

smooth on the length scalg, with a local minimum at the
Here the phase differences across the JJ's are given lpenter of the defect. An upper estimate for the depth of the
®o, - - - on_1- The first term in Eq(3) represents the inter- potential well is given byJg~teqIn(R/&,), whereR is the
action energy due to the inductances between the loops. Heradius of the columnar defett The parameter denotes the
only the self-inductances of the loops are taken into accounsuperconducting layer thickness. In the large current limit,
whereas the mutual inductances are negletide elastic  §=1—]/j.<1 gives a measure of how close the current
constant isc= E§/LI§, whereE ;= (®y/27)l . is the Joseph- s to the critical currenf,. Then the sum of the pinning and
son energy] . the critical current of a single junctior, is  the Lorentz part of the free energy is approximately
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N-1 2 3 3 2 proximation, the form of Eq(7) remains valid. The calcula-
un,x un,x un,y . . .
Ug Y, |38l —==| —2| =% + | 2¥] |, (5 tions of P will be performed in Sec. IV.
n=0 R R 2\ R
where we have kept only the terms that are of oréferThe [ll. SADDLE-POINT SOLUTIONS AND THEIR
terms proportional té(u, ,/R)? anduj, ,u, /R?, that are of ACTIVATION ENERGIES

}rr:?h?ardﬁ{rge‘létihoivgrgeeesg:ri?al\ﬁ(:tggc';gjeng ftrrc])?ndtlr?g Igi(;elr;ire]ES The thermally activated escape from the local minimum
Y R y P ISPk Umin=(0,...,0) of thepotential proceeds mainly via the

ments in thex direction. As a consequence, two identical . . .

X . . saddle-point solutionsig of (1). These unstable stationary

integrals ovew,, , appear in the enumerator and in the de-

nominator of the decay rate expressfowhich will cancel solut|on§ salisfyV,£(us) =0, and their curvature matrix
: . . H(us) with elements
each other. For this reason, we will neglegt, in the fol-

lowing. Renamingu,=u,,, we obtain Eq.(1) with « 52
=g /s. H,m(Ug) = E(ug) (8
| nm\Ys ¢9Unt9um S
B. Decay rate has at least one negative eigenvalue.

Well above the crossover temperaturg that separates
the thermally activated decay regime from the quantum tun-
neling regime,T>T,, the escape of the DOF from the pin-  The saddle pointi,s=(RSJ,...,Ré5), which we call the
ning potential can be described by a Langevin equaijdn rigid saddlepoint(s), can be readily identified. In Appendix
+VE&(u)=£(t), assuming that the motion is overdamped.A we calculate the eigenvalues of a curvature matrix for a
Here 7 denotes the friction coefficient. If we consider the uniform extremal solution. Using E¢A10) we find the ei-
resistively shunted model for the DJTly is the inverse genvalues foH(uys),
shunting resistance. For the vortex problemis given by
the Bardeen-Stephen coefficiéfit. s 6Ugd o[ 07

The white noise random fordét) represents a heat bath Mn =7 R2 Fhws 2N/ ©)
at temperaturel. It has ensemble averagés(t))=0 and
(fi(O)f;(t"))=27kgT5;8(t—t'). In the limit of weak meta- The lowest eigenvaluguy = —6Ug6/R?<0 indicates that
stability, where the barrier is much larger than the thermathere is at least one unstable direction. It is the only oné, if
energyU ,>kgT, the corresponding Klein-Kramers equation is smaller than
can be reduced to a Smoluchowsky equétiofhe escape

A. Saddle-point bifurcation

rate "y, for the (Quas)stationary case was determined tS be _ 2kR? ™
8, =—=—sinf| = (10)
3Ug 2N
dN-1y’ e &U)/keT _ -
1 keT|ug|\ Y2 )s However, whens— 4, , the eigenvalueu}®=6Ug(J,
m=—( oy ) . (6 —6)/R? vanishes. Ats= 5, the saddle splits indicating the
7 f dNu e~ &W/keT existence of arelastic saddle-point configuration,s. Be-
v low, we will show that for 6> 6, the energy&(u.g is

whereu’e S, ueV, S is the hypersurface in the configura- smaller thané(u,s) =NUg. Hence theelastic saddle-point
tion space intersecting the saddle p&hiperpendicular to configurationues instead of therigid one is the most prob-
the unstable directigs), V is the configuration volume oc- able configuration that leads to decay. One identifies the en-
cupied by all metastable solutions, aa is the curvature of ~€rgy of the most probable configuration with the activation
the energy surfacé(u) along the unstable direction evalu- €nergyU,. The saddle-point bifurcation can thus be inter-

ated at the saddle point. preted as a crossover between two types of decay: the cross-
Solving Eq. (6) in the steepest-descent approximation,0ver from arigid regime with an activation energy,(4
one can derive the Arrhenius law =<, )=NUg to anelasticregime withU 4(6> 8, ) =&(Ueg)

The corresponding decay diagram is shown in Fig. 3.

Ua(6
( ))1 @

kgT

The activation energy, is obtained by evaluating the en-  We now calculate the elastic saddle-point solutions. First,
ergy functional(1) at the saddle-point configuration, which we discuss the appearance of the elastic saddle in the cross-
will be done in Sec. Ill. The computation of the prefackor over regime for arbitrarily many DOF. The evolution of the

is a more involving task. In this case, we have to analyze thelastic saddle point with increasingjis elucidated by ana-
spectrum of the curvature matrixd,,& at the minimum and lyzing the exactly solvable case of three DOF. Far from the
at the saddle point, sind@describes the contributions to the crossover, the three-particle result is used to make an ansatz
rate that stem from the fluctuations around the extrema. At &r the N-particle solutions, which can again be determined
characteristic valué= &, the saddle bifurcates indicating a perturbatively.

crossover from a rigid regime to an elastic regime. In the Near the crossover, we expand the elastic solution around
crossover region, the steepest-descent approximation canrtbe rigid one,u.s=Uu,s+Au. Then £ is most conveniently

be applied. However, even beyond the steepest-descent agpresented in the coordinate system of the principal axis of

I'n=P(9) ex;{ - . _
B. Rigid and elastic saddles
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1 ‘ ‘ order terms ing, that arise due to the coupling to the other
fluctuation coordinates have to be taken into account. One
/8 =9 es_timates thaA28~qn¢1qr_n¢1~qnﬂqf In comparison, the
third-order term%),,g,g, With m,n# 1 are much smaller and

] hence can be neglected. Sirtq%is only coupled tog, and

a d,, one finds

2
P

2
B
2
4K

9,

Ed

(15

N—-1
~ 1 ~ a2
@)=NUg| 1+ 5 2 wiai—3ai| do+ 7) :

In the following, we define the small parameter= (1

N — 8, 18)=—u'S/3, which measures the distance from the
crossover. It is positive in the elastic regime and negative in
the rigid one. Within the crossover regime,l<e<1. By
solving VE=0, one finds the extrema. In addition to the
extrema already found in the rigid regime, an elastic saddle-
point solutionges With a single kink emerges slightly below
the crossover, fob6> 6, ,

FIG. 3. The decay diagram of a system with a small number o
degrees of freedonN. The solid line and the dots indicate the
crossover from rigid to elastic decay &t &, as a function oiN.

H(u,s), wheref is diagonal in the coordinates up to second
order. The transformation is achieved by rewrititg as a

trigonometric polynomial, 9¢

. 96°=>—=7s
ak(n+1/2 2D uts
u,=R8 1+ >, chos(¥”. (11) #o
k=0
3e 1/2
Here the coordinateg, are the dimensionless amplitudes of qis=(ﬁ) , (16
the Fourier modes with a wave numbethat measure the
deviations from the rigid saddlepoint solutia)®=Ré. In
this coordinate system, the energy functional reads qes= gf
1 N1 N—-1 4Dpy
—NT _ 3, — ~rSsy2_ 2
E(Q)—NUB{]- 205+ 2 go i Yk 3%21 Ak afs=0, k>2,

N—-1

1 ) whereuy, 15, and
) k§=:1 Ak(A2k— d2n—k))

D=—18/(2u)— M 4n)=3/2—-9/(4ny) (17
N—1

— 2 AmAk(Am+k+ qm_k_qZN_m_k)} (12) are evaluated at the crossover. Thkiastic solution has a
m>k=1 lower activation energy) °~NUg8*1—Ce?(5)] than the
where we defing, =0 fork=N, andq=(do, . . . dn_1). In Stiff solution. HereC= (54— 81/u%%)/32D? is a positive con-
the new coordinate system, the dimensionless eigenvaluggant of the order of unity, singei>=6 for N=3. Since both
i of the curvature matrix are given hyo=(R%Ugd) o U.(8) and its derivativdJ/(5) are continuous, but’(5) is

andﬁk:(R2/2uB§)Mk for k+0. The different prefactors are discontinuous ab= &, , the crossover from rigid to elastic
due to transformatiofi11). At the rigid saddle one finds decay is of second order.

In order to illustrate that in our discrete model, close to
the crossoverboundarynucleation is the dominant process
leading to decay in the elastic regime, we will study a chain
) ) consisting of three particles, where the saddle-point solutions
where gy is the Kronecker delta function. FOS<d,,  can pe determined exactly. The parameteran now take

where the saddle-point solution is the rigid one wilh — any yajye in the interval-«o<e<1- 8, . After substituting

=Ry, all the valueg|,=0. The second-order expansion&f ~.5 6 TIS— _3 and SS—6—9¢ the free-ener

around the rigid saddle point reads Mo =70, B = 736, M2 = € ay
function reads

~o 26R% 7k
M= Ugs 0 12N

sin2( )—3—35%, (13

L N1
1+§ > MrkSQﬁ)- (14)

£(q)=NUg

[ 2 3 36 2 96 2
g(q()!qlqu):sUB l_3q0_2q0_?q1+ 3—7 q2

At the crossoverﬁ’lS vanishes and the quadratic approxima- q

tion of £ becomes independent gf. Since large fluctuations —300(q2+q3)— 72(3q§—q§)
in g, would not contribute to the free energy, this approxi-

mation becomes insufficient within the crossover regimerrom the extremal conditiofi€=0 we calculate the extrema
where u!S<1. Thus, in order to describe the free-energyand find that slightly below the crossover in the elastic re-
contributions of fluctuations irg; more properly, higher- gime, onlyges=(dg°,d5°d55), with

. (18
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FIG. 4. The saddle-point solutions, of a system with three

degrees of freedom as a function of the barrier paran®i®r. For

6< 8, the system escapes rigidly from the local minimum of the
potential via a configuration where all the patrticles are sitting on to
of the barrier,u,=u's. At §=46, the saddle splits and the elastic

regime is entered ford>4, . With increasings, ug=ug® ap-
proaches the minimumy,=u$*=Ré, and the last particlai,

=Uu5°’—=R(5+8,) is hanging over the maximum of the single-

particle potential.
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FIG. 5. (a) Rigid saddle-point solutiongb) Elastic saddle-point
solutions.

R
Up*=5[0+ 8, +(8°+286,—35,)Y%.  (26)
Note that there exists a second solution with the same en-
ergy, which can be found by simply exchanging the indices 0
and 2. The results are displayed in Fig. 4 and illustrated in

pFig. 5. By increasing the barrier parameteaboved, , the

symmetry along the defect is broken as the elastic saddle-
point solution develops. Whe#i is raised further, particle O
approaches the potential minimumwgt,,= 0. Particle 1 tries

to adjust between its neighbors. It is dragged toward the
minimum by patrticle 0, but, due to the coupling to particle 2,
there will be a finite distance between the particles 1 and 0.

q5%=— % (19 On the o_ther hand, particle 2 has swapped to the other side of
the maximum.
2 Far in the elastic regimed/ 5, >N?, we can generalize
qes:(t)(ﬁ_ez) (20) this picture to arbitraryN. Making the ansatziy_1>Uyn_»
1 3 ’ >uy_3~0 we find the approximate solutions B€=0,
uy® ;~R8+ kR%6Ug, 2
qgs:§' (21) N—-1 B ( 7)
uy® ,~«kR36Ug, (29
is a possible elastic saddle-point solution. Energetically, the
sign in front of q5° does not have any relevance singg ues . 3~0, (29)

appears only quadratically ifi It arises due to the existence
of two degenerate solutions that can mapped into each oth@nd the equivalent saddle,—uy-_;-,, with an activation
by changing the sign afi;, which is equivalent to a mirror €Nergy
symmetry transformation. Inserting the solutions for the elas-

tic saddleq,s into &, we can represent the free energy as a
function of ;

U= Uge| 14 25 30

a— “YB + 2U85 . ( )
The activation energyU, is displayed in Fig. 6 forN
=2, 3, and 4. Note that in this limit the elasticity term
kR?<2Ugé and the activation energy resembles that of a
single particleJ ,~ Ugé° with a renormalized barrier param-

E(Qed =Ug(3—3€2+ ). (22

At e=0 one finds&(ge9 =£&(q,s). For e>0, the value of
&(gey Is smaller than that of(q,s). Thus there is a smooth
crossover from the rigidj, s to the elastic configuratiog,s,
which becomes the most probable one. To summarize, the 4=
activation energy of a three-particle chain is given by

UP=3Ugs%, (23

USS=Ug(8%+3626—63)

in the rigid and elastic regimes, respectively. In order to vi-
sualize the most probable configuration leading to decay, we
represent the saddle-point solution in the original coordinates
Ug,Uq, andu, as a function of the parametér We find that,
for 6> 6, ,

1 1 n 1 i
0 1 207378 10
8/98

12.27
*

FIG. 6. The activation energy, normalized to the activation
energy of a single particlg 36 as a function of the barrier param-

R eter§ for various number of particled. ForN=2, and 3 the results
u85=§[5+ 8, —(8°+2868, —3682)Y2), (24)  are exact, forN>3 the activation energy is calculated perturba-
tively in the crossover regimé~ &, and in the limit of large’. The
es activation energy foN=2 and the experimental dattull dots) are
U =Ré,, (25 taken from Ref. 5.
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eter. This means that for largé the system cannot gain U 5|;L(s)| -1 ~min\ 112
much energy by nucleating at the boundary and bulk excita- P= -
tions become important. The bulk saddles are particle like s 2mnR? | n=0 |
excitations at positiomn with a double kink, (39
) :2 |:“O| detH (Upmin) 12
ub~Rés+ kR%3Ug, (31 =~ 2m7| [detH(ug] |
Um+l~KR3/6UB, (32) where the sum over the saddle indstakes into account the
contributions of equivalent saddles. HergM™ ™" and
ug%O, (33 (,un),un are the(dimensionlesseigenvalues of the curvature
matricesH (u,;,) andH(ug) evaluated at the local minimum
where|m—n|>1 . They have an activation energy (Omin)Umin @nd the saddlesg)us, respectively. In contrast

to a system with translational invariance, in the finite sys-
tems considered here there is no Goldstone mode of the criti-
cal nucleus. Hence, well above and below the crossover,
whereu]#0, the evaluation oP is not corrupted by diver-
which is larger than the activation energy of the elasticgences.

boundary saddles. Though energetically not preferable, for |n the rigid regime, we take only the energetically lowest-
N>1 the decay can occur via bulk saddle-point solutions ifiying saddle into account, and the sum osereduces to a
the barrier parameter exceeds a crossover véité,s. The  single contribution. With the determinants #tup,;,) and
crossover to this new regime will be discussed in more detaifletH (u,) given in Egs.(A7) and (A9) in Appendix A, we

in Sec. IV. find

2

UaNUBCﬁ 1+ U_B5 ,

(34)

sin(NQ)tank Q/2) |
sin(NQ)tan(Q/2)

IV. PREFACTOR 3Ugd
P(6<é,)=

Having determined the activation energlgg(5) for the TR’
different regimes, the remaining task is to calculate the pref- Where Q=2 arcsinhfu/2) andf — 2arcsinfy/2) with w— o

actor P(6) in E 7). Rewritten in terms of
() a. (7). . =/6Ugz8/kR%. Below the crossover, two equivalent low-

=(do, - --.An_1), EQ. (6) reads ; . . . :
(G On-1), E-(6) energy saddle-point solutions arise, as was discussed in Sec.
Ill. The sum over both saddles gives rise to the factor 2 in

. (39

f dN~1q —E(q’)/kBT
UgksT|ud| | 8 y]4/2
Ugks 0 /U'OSI detH(umm)
> =
= Vs 2N R | P00 =2 | [detH (e 40

f dN- lq e—g(q)/kBT
(35) In Egs.(Al1l) and(A12) we have estimated the determinant
detH(ue9 and the eigenvalugg®, respectively, in the limit

Here q'=(03.,0;,....On_1) IS running alongS and q 6> d, . We obtain

=(qo.q) is probingV. In the denominatorg,<0 ensures
that the integration is only performed over stable configura- P(6>6,)~
tions. The additional prefactor arises when transforming the *
integrals to theq system and taking into account thaf
_ UB5,TLS/R2- As already mentioned in Sec. lll, fod4>1 a crossover to
a regime can occur, where the decay dominantly occurs via

bulk excitations. The number of DORy,, where the cross-
over from boundary to bulk nucleation occurs, is found by

In the Gaussian approximation, the integrals in the nucomparing the corresponding rates according to &y. In
merator and in the denominator in E®5) are evaluated by the bulk regime, one has approximateN equivalent
taking into account only the quadratic fluctuations around thesaddles, and thus with EqgA\13) and (A14) the prefactor is

)] (41)

A. Far from the crossover: Gaussian approximation

saddle poing,, given by
S~ E(g + o E AR aR? (36) P=N_— (42)
and the local minimung;,, Comparing the rates for boundary and bulk nucleation with

U, given by Eqs(30) and(34), andP given by Eqs(41) and
(42), respectively, we obtain

&q)~ £<qm.n>+ En““”(q -2, (37 i
2kg T IN(N/2)

kR? “3

bs™

respectively. Thus one obtains a prefactor
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FIG. 7. Scaling property of the prefactéras a function ofé
near 8, . P/Pg is shown as a function of the distaneefrom the
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count higher orders of the fluctuation coordinates. Secbnd,
can be regarded as a scaling function, where the consgtants
and Py contain the system-specific parameters. The scaling
relation is universal in the sense that it does not depend on
the details of the considered system. Of course, a constraint
is that the crossover must be of second order to guarantee the
validity of the perturbative treatment that we applied. How-
ever, we have excluded systems with a single-particle poten-
tial that enforce a first-order transition from the beginning.
Note, that Eq(44) was found by taking into account only the
cubic terms of the modesy, q;, and g,. These long-
wavelength excitations determine the decay process at the
crossover, where the discreteness of the system becomes ir-
relevant. Hence the result can be applied to continuous sys-

Note, that within our approximations the choice of the SyS_tems as well. In fact, a similar crossover function is found at

tem specific parameteid,R, x, and the temperaturgis re-
stricted to values that meet the constradpi<1.

B. Near the saddle-point bifurcation: Beyond steepest descent

In the crossover regime, wheré— 5, and hence|e|

the second-order transition from thermal to quantum decay
of a single particle in a metastable stiterormally, this
theory can also be used to describe a rigid-to-elastic cross-
over in the thermal decay of an elastic line escaping from a
homogeneous defect, but witheriodic instead of open
boundary conditions, which we considered here. Note that

—0, the prefactor calculated in the Gaussian approximatiotthe scaling function found in Ref. 19 is different from ours.

diverges asP~1/\/e due to the vanishing eigenvalye, =

One can indeed show, that the functional form of the scaling

—3e. The divergence can be regularized by taking into acfunction is influenced by the symmetry of the system.

count the third-order terms in, in the approximation of

&(q’) around the saddle point in Ed35). Defining the
system-dependent scaling variables

~[54 tankQ/2)sinh NQ ) 1¥2u Z469'
72 pR3(Nkg TD) Y tan /2N)

S

and
[ 16kTD | *
“"lonsdug)
we show in Appendix B that
P(e)=PsF(€le), (44)
where the functiorfF is found to be
T 79XF(V W —pa(yY?) = 1ya(y?) ],  6<6x,
F(y)={ 8 YI'(1/4), 5=6, ,
Iyl
™ 7eXF(y2)[| _ua(YD) Fyy?)], 0>
‘ (45)

For large| e/ (| the prefactor given in Eq44) matches with

V. DISCUSSIONS AND CONCLUSIONS

We studied the thermal decay of a chain of elastically
coupled particles from a metastable state. The metastability
arises from each of the particles being trapped in a local
minimum of their single-particle potential. The energy bar-
rier that separates the local minimum from energetically
lower-lying ones can be tuned by a barrier paramétet
6=0 the energy barrier vanishes and the metastability ceases
to exist. With increasing, we find three regimes. For small
6, the decay occurs mainly via a rigid configuration, where
all the DOF leave the trap at once. A5,
=2kR?sir’(w/2N)/3Ug a saddle-point bifurcation occurs,
which marks a crossover from rigid to elastic motion. For
6> 6, the decay occurs mainly via boundary nucleation.
However, at even higher values=15> 6,.> d, a crossover
to bulk nucleation can take place.

Our main goal was to evaluate the thermal decay rate
I'v=P exp(=U,/kgT) in the three regimes. This involves the
calculation of the prefactdP and the activation energy, .

The latter is given by the energy of the most probable
configuration leading to decay, namely, the lowest-lying
saddle-point solution. We solved the problem o+ 3 par-
ticles exactly. Furthermore, we treated the case of an arbi-
trary numberN of DOF perturbatively in the crossover re-
gime and deep in the elastic regime. We have shown how the

the Gaussian result. However, in the crossover regime, whef@y/Stém uses its elasticity to lower the activation energy in the
|e/e <1, the Gaussian prefactor deviates strongly from Eqelastic regime. Whereas in the rigid regime the activation
(44), as expected, since here the Gaussian approximation bbarrier isUY=NUgé° in the elastic regime near the cross-
comes invalid. Since we considered a metastable situatiomver US*~UZ(1—Ce?), wheree=1-5, /8 andC~1 is a
wherekgT<Ug8%, we havee,<1. Hence, the crossover re- positive constant that depends on the details of the potential.
gime is extremely narrow|5— 6, |<d, . The functionF Increasingé in the elastic regime, the particles first escape
=P/Pg, which is shown in Fig. 7, reflects two interesting via nucleation at the boundaries with an activation energy
aspects. First, one realizes that the behavior of the rate i95°~Ugs°+ kR?6%/2, where the first term arises from the
smooth at the crossover. The divergences that occur in thgotential energy of the activated particle and the second term
Gaussian approximation are regularized by taking into acis the elastic energy of the kink that occurs in the boundary
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saddle. Due to the imposed fréeon Neumanh boundary differences across each of tNeJosephson junctions. In cur-
conditions, this kind of activation is energetically preferredrent driven DJTL’s, metastable states occur when the DOF
compared to bulk nucleation with an activation enetdff®  are trapped in a local minimum of the tilted washboard po-
~Ugd%+kR?5%. Since the bulk saddle consists of two tential common to these systems. R9r2, the problem
kinks, twice the elastic energy is needed to activate a bulkeduces to the decay of the phases in a current-biased dc
nucleation process. However, in large systems, Withl,  SQUID* ¢ Both rigid decay-® where the two phases behave
bulk nucleation becomes more probable foe-d>6,s as a single one, and the elastic casehere the two phases
=./2kgT In(N/2)/xR?. Above &, the many possibilities to decay one after another, were experimentally observed. In
excite a particle somewhere in the bulk, which gronNaim  the continuous limitN— «, the system becomes identical to
the prefactoP, outnumber the two possibilities of boundary a long JJ. The rigid-to-elastic crossover océtiféwhen the
nucleation. At larged, the elastic interaction between the junction lengthL; becomes of the order of the Josephson
particles becomes less and less important and the activatidength L ;~a#\;. Here, we analyzed a model for a DJTL,
energy approaches the enerdys® which is needed to ex- that provides a system to study the intermediate case of de-
cite a single particle over the barrier independently of thecay from a metastable state with a finite number of DOF. An
others. To discuss the relevant energy scales, we now fix aixperimental investigation of the rigid-to-elastic crossover
variables excepN. The crossover occurs when the numberrequires that the currertcan be driven through the cross-
of DOF is increased abowd, =2 expkR26/2kgT). Hence, over currentl, =Nl (1— 6,%). An orientation for the choice
when the elastic coupling is weak and the temperature isf the system parameters can be obtained by comparison
high, bulk nucleation already occurs at lower valuedgf.  with the dc SQUID}*® noting that 1,—NI,

The crossover is thus determined by the ratio of elastic en<h?c?/(e?L?I2N%). A systematic experimental study of the
ergy and thermal energy. rigid-to-elastic crossover as a function of the system param-
Second, we determined the prefacter Far from the etersL, |, andN is still lacking and would be highly de-
rigid-to-elastic crossover, the calculation of the prefadtor sirable. A remaining question was, if additional crossovers
was done in Gaussian approximation both in the rigid and iroccur in systems with a large number of DOF. In addition to
elastic regimes. Near the crossover, the Gaussian approximgie rigid-to-elastic crossover due to a saddle-point bifurca-
tion breaks down due to a diverging integral, which is causedion of the potential energy, we find that in systems with
by a vanishing eigenvalue of the curvature matrix. By takinglargeN a second crossover from boundary to bulk nucleation
into account higher orders in the fluctuation coordinates, wean take place. DJTL’s with a large number of DOF offer the
remove the divergence and obtain a smooth behavior of thpossibility to observe such a crossover by varying system-

rate at the crossover. The prefactor of the rate exhibits gpecific parameters or the temperature.

scaling propertyP/Ps=F (€l €5). The functionF is universal, Let us now discuss our theory in the context of a single
but depends on the symmetries of the model. The scalingtack of pancake vortices trapped in a columnar defect in a
parameter$’; and e are system-specific constants. layered superconductor. In the presence of a current dgnsity

At the saddle-point bifurcatiord ,(8), U.(6), P(9), that flows within the layers, the vortices are driven by the
P’(8), andP" () are continuous, where& () is discon-  resulting Lorentz force. Once thermally activated from the
tinuous. Hencd',(8) andT'},(8) are continuous, bufj(5) def_ec_:t,_the pancake stack starts to move throu_gh the _sam_ple
is discontinuous. Interpreting , as a thermodynamic poten- until it is trapped by another defe<_:t. The resulting motion is
tial, one easily sees the analogy between the crossover déalled thermal vortex creep. A typical example for a layered
scribed here and a second-order phase transition. This anglYStem is a high-temperature supercondudtéTSC). A
ogy becomes even clearer when the integral in thd1TSC like YBCO is characterized by an anisotropy-5,
enumerator in Eq(6) is interpreted as the reduced partition f'ind the ratio of the penetration depth to the coherence Iength
sum over the DOF transverse to the unstable direction. Not§ Man/éap~100. The distance between the layers and their
that close to the crossover the discrete structure of the modétickness ares~t~ &y, and the defect radius B~2&;p,.
becomes unimportant, this kind of crossover can also be als® order to observe the transition from rigid to elastic decay
found in continuous systeni®&?> The question arises experimentally, the ratioj¢—j,)/j.>0 must be sufficiently
whether first-order-like transitions could occur also in thelarge. However, substituting the defect enerdyg
thermal decay of elastic chain systems. As in the crossoverteoIN(Ri&y) and the elastic energy R?/s, with &,
from thermal to quantum decd$? the type of the crossover = (eo/¥?)IN(\ap/éap), iNtO (jc—j4)/jc= %, one finds that
depends crucially on the shape of the single-particle potentigven in systems with low anisotropy and a small number of
U(u,). For a cubic parabola as is discussed in this work, théayers (.—j,)/j.< 10 2, indicating that the phenomenon
crossover is of second order. However, one could imagineould hardly be observed experimentally in high-super-
other physical systems where the single-particle potential hasonductors sincg, is very close tg.. Thus, for large cur-

a form that causes a first order transition. rentsj.—j<<j. as considered here, the vortex system turns

The discrete model that we have used here is quite gersut to be mainly in the elastic regime where the layered
eral. In the following we will discuss the application of the structure of the material is important. Then, the activation
theory to two physical situations, the dynamics of the phasebarrier U, is of the order of the single particle barrier
in DJTL’s and the thermal creep of pancake vortices in lay-Ug(1—j/j.)%? which can be interpreted as a vortex creep
ered superconductors with columnar defects. induced by the escape of individual pancakes from the co-

DJTL'’s are parallel coupled one-dimensional Josephsoniumnar defect*?® This “decoupling” regime can be also
junction arrays, and th&l DOF in this case are the phase entered from the low current half-loop regimej., when
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the width of the bulk critical nucleus becomes of the order ofjate the determinant of the normalized Hessihg/ « for N
the layer separatiot.We find that at low temperaturdsthe >4, one setx,=U"(u,)/ . Below, we will derive a recur-
thermal creep is induced by bounddsyirface nucleation. It rence relation, which is used to determibg in some spe-
would be interesting to investigate experimentally if thecjal cases.

crossover from bulk to surface nucleation might be observed By shifting the last column to the first and then lifting the
in thin layered samples. In sum, we calculated analyticallyhottom row to the top, one can rewrite the determinant as
the creep rate for coupled particles trapped in a metastable

state and found that an interesting behavior arises from the l1+Xxy-; O o - 0o -1
interplay between elasticity, pinning, discreteness, and finite-

size effects. 0 % -1 0 - 0
0 -1
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APPENDIX A: DETERMINANT AND EIGENVALUES ) ) )
OF THE CURVATURE MATRIX An_o= 0 . . - 0
1. Recurrence relation for the Hessian matrix ‘ -1 2+Xn-3 -1
0 A 0 - 1 2+ XN*Z

As was shown in Sec. IV, the prefactBrof the thermal
decay rate is a function of the determinant and the eigenvaly the following, we will consider the case whexg= - - -
ues of the curvature matrix evaluated at the relative mini—y _ —x Note thatx, andxy_, can be arbitrary.

mum and the saddle points, respectively; see (Bf.. The ExpandingD,, we find with G, =detA,

curvature or Hessian matriHy with matrix elements

Hnm(Ug) = dndm&(Up) determines the nature &f at the ex- Dy=(1+Xy_1)[(1+Xo)Gn_2—Gn_3]
tremumu,. If all eigenvalues oHy(uy) are negativeposi-

tive), ug is a relative maximunmiminimum). If some of the —(1+%9)Gn-3+GCn-4- (A2)

eigenvalues are positive and some are negative, uhes a

saddle point. FOE(uy) with N=3, the Hessian matrix reads Expanding the determinari, according to the last row of

A,, one finds the recursive relatiéh,G,=(2+x,)Gp_1

BEu) -k 0O -~ 0 —ak —G,_, that can be rewritten as a difference equation
e 0 (Gn=Gn 1)~ (Gn 1-Gn 2)=XGp 1=0. (A3)
0
Hy(u)= ) ) . ) ) . The initial conditions are given by the determina@g and
: . . . : G,
0 —K
G,=2+X,
—ak 0 - 0 —x A& 1=etx
(A4)
In the case of open boundary conditioms- 0, the diagonal
elements are given by G,=(2+x)°>—1.
k+U"(up), n=0N-1 For 2<N=4, we can use the recurrence relations@gr, if
92E(u)= we defineGy=1, G_;=0, andG_,=—1.

2k+U"(u,), 0<n<N-1.

In the discussion that follows, we introduce 2. Uniform case
The solution of these difference equations is possible for

1+x, -1 0 0 . .
special cases. We now analyze the uniform case wRere
-1 2+x; -1 e : =Xg="+"=Xn_1. Then Eq.(A2) simplifies to
Dy=de : : ,
Dn=(1+X)2GN_2—2(1+X)GN_3+Gn_4. (A5
N 2+XN72 -1 N( ) N—2 ( )N3 N—4 ( )
0 e 0 -1 1+XN_1 a. Determinant at the relative minimum, %0

(AL) We first discuss the case of the local minimura uy,;,,,
which is used to calculate both the determinant and the chawhere x=»w?>0. Imposing the initial conditions given by
acteristic polynomial oHy . For example, in order to calcu- Eq. (A4), one obtains a solutidhof Eq. (A3),
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_ sinhNQ)
T (A6)

where

0w
Sin 2—5

Using Eqgs.(A5) and (A6), we obtain

_ ) Q
Dmm:wZGmml:ztan}‘(—)sinf‘(NQ). (A7)

2

b. Determinant at the rigid saddle, 0

THORSTEN DRGSE AND CRISTIANE MORAIS-SMITH

PRB 60

S~ (1+xy-1)(2+Xy-2) (1+X)GR"y.  (AL1)
The ratioDJ]"/D¢S, which is needed to calculate the prefac-

tor in the elastic regime is found to be

Do kR?
- =] —+ 2 .
Des 1 300 O[ (5, 16)7]
To calculate the eigenvalues, we set agai

=U"(uy)/ k— ul k. The characteristic polynomi@y(u) is
now up toO(8V"2), given by

Dn(m)=(1+XN-1)(2+XN-2)(1+Xo)Cn-_3(a).

In the same way as for the local minimum, one obtainsthys, to lowest order i, we find that the smallest eigen-

Dy at the rigid saddlau=u,s but now with negativex=
— ©%<0. One finds

s :sin(NQ)
N1 ging
where
0w A8
sins =, (A8)
and hence

Q ~
DﬁzZtar(;)sin(NQ). (A9)

c. Eigenvalues

The eigenvalues dfly are found by evaluating the roots
of the characteristic polynomial, dét— w«l)=0. We have
again a determinant of the form of EGA1), but now with
Xn=U"(u,)/k—ulk, such that we can defin®\(u)
=k Ndet(Hy— ul). Using Eq.(A9) we find that the roots
where Dy(u)=0 are given byQ,=m=/N, where m
=0,...N—1. Inserting Q,, into Eq. (A8) yields wn
=2 sin@,/2); henceDy(u,,) =0 for

+U"(ug), (A10)

. mar
Mm= 4k smz( m

which are the eigenvalues &fy(ug) for a given uniform
extremal solutiorug=(ug, - . . ,Ug).

3. Nonuniform case

Approximate solutions for the determinant and the eigen-

values can be obtained deep in the elastic regifhé, >1.

a. Elastic boundary saddl€ 6,s> 6> 6,.)

value is

pl (A12)

b. Elastic bulk saddle( > 6,5

For the elastic bulk saddle-point configurations obtained

in Egs.(31) and(32) to highest order inS/ 5, one finds for a
double kink situated atm, U”(u,)~—6Ugd/R?>—4«k,
U"(Up+1)~6Ugd/R?—4k, and for [n—m|>1, U"(u)
~6Ugd/R2. With x,=U"(u,)/ x and using periodic bound-
ary conditions, the determinant is approximately given by

DS~ (24 Xy 1)(2+ X)) (24 X 1) G .
The ratioD}]"/DES is

D 4kR?

D_gs:_l_ 3Ugs

+0[(8,16)?]. (A13)

The characteristic polynomiaDy(x) is now up to
O(8N"?) given by

Dn(m)=~(2+ Xm+1) (24 Xm) (2 Xm-1) Gn-3( 1),

wherex,=U"(u,)/x— ul/ . Thus, to lowest order i, we
find that the smallest eigenvalue is

6Ugo
Mo =—2Kk— RZ .

bs__ _

(A14)

APPENDIX B: PREFACTOR IN THE CROSSOVER
REGIME

1. Rigid regime (6= 4, )
For 6— &, , both the eigenvalug’® and the determinant

For the elastic boundary saddle-point configurations obD}; vanish. Hence the Gaussian integral containidg in

tained in Eqs(27)—(29), to highest order inS/ 5, one finds
that U"(ug)=---=U"(un_3)~6Ugd/R%,  U"(uy_»)
~6Ugd/R?—2k, and U"(uy_1)~—6Ugd/R?>—2k. With

Eq. (38 diverges, and third-order terms oy have to be
taken into account. In the rigid regime, the third-order ex-
pansion of€ in g4 is given by Eq.(15). The contributions to

X,=U"(u,)/xk one obtains for the determinant up to P of all degrees of freedom excepyeS are found by

o(sN"?):

Gaussian integration:
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1/2

|ZfS TN A min 1’Z(Nu a\3>1/2 o_ UZ &2 | TN g min
2mkgT 8 nZR“HE:%u:f

(Nb\'SUB)lM

HN 17 rs kgTD

- 2777]R2

f dqlexp[ T T(,U« *q1+Day) |

In the following we first derive an approximate expressionand
for ™11, " and then evaluate the remaining integral

54 tantfQ2/2) sinh(NQ ) 112U 745974
B1) %[ Q2 /2)sinh(NQ) |7 U g 5, B3
732pR3(Nkg TD) Y4 tan /2N)

overq;.
For the calculation of the product term we use the relation _ [ 16ksTD (B4)
™V, = *DNDE . Let us analyze' for 'S * \oNsdug)

close to zero. Recall that
which are constants to leading order én we obtain the

prefactor of the rate for the rigid region of the crossover

~ U”(u T rs regimes<s, :
o= — 20 g | AL )
K 2N K
Inserting this expression into EGA8) in the limit of small _7Ps € 6_2 _ 6_2 6_2
rs : P(e)= I 14 5 l1/4 5] |€XR = |-
w, we find V2 € e’ € €
(B5)
rs
O~ T ’u—l 2. Elastic regime (6= é,.)
N 2wsin(m/N) In the elastic regime near the crossover, wherdd, we
such that, to lowest order in's expand&(q) around the perturbative elastic saddle-point so-
’ ' lution (16),
o Nt - 10(2) 10(3)
si(NQ)~ ———— &(@)=E(eg) + 28 ({E}) + 5 (&),
2k sin(7/N)

where £?) and £®) contain the terms of second and third
and order, respectively, and,=q,—q;° are the fluctuations
around the elastic saddle point. By introducing the shifted
fluctuation coordinates fam+1,
r(ﬁ m
ta > ~tar< ZN)'

B gt 297°%1An
m— Sm ~ 1
Hence s
with Ag=—3, A,=—3%, andA;-,=0, we find, for the qua-
~ Dm'”_ 4k o ™), Q) . NG dratic part to leading order in,
ur DEs =~ 0S| oy /tanh 5 sinh(NQ).
The integration oveq; yields E@=—2uPE+ n;l i

Note that,u are the dimensionless eigenvalues evaluated
J’ dag ex;{ T _I_(,ul qs+ Dq‘l‘)} at therigid saddle-point configuration. Within the crossover

regime, to leading order i, the eigenvalues at the elastic
1 [ [N
2V DN 16kgTD

saddle-point solutiom,ﬂ 'S, are independent of, ex-
, ceptﬁ‘js— —2,u =2¢/3. The higher-order contributions to
where D as defined above in Eq17) arises during the (3) -
Gaussian integrations ovep andq,. K, is the modified 65 = ngl Amém

the expansion read
Bessel function. We make the substitutiaf’ = — 3e. After
defining Transforming the fluctuation coordinates a second time,

NUg ()2
16kg TD

1/4

(B2)

£1+2Dar’e
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- .~ A * D ~ 272
Emz1=Emt ﬁ—zﬁ degleXP[ - m[&—(qﬁ ]
m
- _om |, e
§1=&1+07, 22 VI D[ "Y416sTD
we find (1) (11)?
+'1/A[m “OH " iarp) PP

wherel 1, andl _,,, are modified Bessel functions. The pref-

1 - D . actor of the rate for the elastic reginde= 5, in the crossover
&) =g +5 ngl M:ns'vrszrE[fi_(q(ﬁz]z- region then reads
b WPS\F | 2 o €2 €2
By using @$9)2%=— /2D =3¢/2D, we evaluate the inte- (€ 2 Vel M €2 v e & €]’
grals as in the previous paragraph, (B7)
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