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Abstract

Experiments on the thermal escape of a Josephson vortex trapped in a magnetic "eld}induced potential are reported.
The measured critical current statistics in a wide range of applied magnetic "eld H shows that the vortex escape
temperature ¹

%
K¹ at large magnetic "elds and ¹

%
<¹ for small values of H. We have developed a theory of vortex

escape which explains the increase of ¹
%

by the presence of a small residual pinning in the junction. A peculiar regime
when vortex changes its shape in the process of escape is also analyzed. ( 2000 Elsevier Science B.V. All rights reserved.
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It is well known that in a small Josephson junction the
presence of #uctuations leads to transition from the
superconducting state to the resistive state at a random
value of the bias current I [1], resulting in a statistical
distribution of the critical current P(I

#
) in the limit of

small damping.
In a long Josephson junction of length ¸<j

J
, where

j
J

is the Josephson penetration length, this transition
may occur in the form of escape of a Josephson vortex
(#uxon) from a pinning potential. The experimentally
controlled cos-shaped potential can be formed in an
annular junction placed in the external magnetic "eld
H [2,3]. Here we report on the observation of critical
current distributions in such a junction with a trapped
vortex. We also derive the lifetime q(I) of the supercon-
ducting state which allows to consistently explain the
measurements.

Using the well-known Kramers theory [4], the de-
pendence q~1(I) can be cast in the form of a functional
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integral over the Josephson phase distribution
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where A"D:dx(du(x)/dx) exp(i2px/¸)D, u
1

is the plasma
frequency, hJH is the amplitude of the pinning poten-
tial and the Josephson junction energy ;

J
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Here, I

0
is the critical current of the junction without

trapped #uxon. We obtain two regimes of #uxon escape.
In the limit of a small potential, the lifetime q(I) is given
by the formula that is directly mapped to the case of
small junction

q~1(I)Ku
1A

IM
#
(H)

I
0
B

1@2
(2e)1@4exp~(2J2IM # (H)@3eT)e3@2, (1)

where e"1!I/IM
#
(H) and IM

#
(H) is the #uctuation-free

critical current [2]. In the opposite limit IM
#
(H)<

0921-4526/00/$ - see front matter ( 2000 Elsevier Science B.V. All rights reserved.
PII: S 0 9 2 1 - 4 5 2 6 ( 9 9 ) 0 2 2 0 8 - 5



Fig. 1. Typical measured P(I) (solid circles) and q~1(I) (open
circles) curves together with the analytical dependence (solid
line) given by the Eq. (1).

Fig. 2. The critical current IM
#
(H) (open squares) and escape

temperature ¹
%
(H) (open circles) versus the applied magnetic

"eld. The solid line is given by the Eq. (3).
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(e¹/I

0
)1@4 the potential well squeezes the #uxon and

the latter changes its shape in the process of escape.
Here q~1(I) is given by

q~1(I)Ku
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e~I0e2@2eT. (2)

Experiments have been performed on
Nb/Al}AlO

x
/Nb long annular Josephson with mean

radius 46 lm and width 5 lm. The measured value of
I
0

was 2.0 mA. At the temperature ¹"4.2 K we mea-
sured the statistical distribution of critical currents P(I

#
)

in a wide range of magnetic "eld H (see Fig. 1). Using
a well-established procedure [1,5] we found that the
lifetime q(I) shows a good agreement with the expected
e3@2 scaling (Eq. (1) and Fig. 1). In our range of para-
meters we did not observe the regime described by
Eq. (2).

We obtained a linear dependence of IM
#
(H) (dash line in

Fig. 2) which re#ects the proportionality of the potential
depth to H [2,3]. Using Eq. (1) we calculated the escape
temperature ¹

%
for di!erent values of IM

#
(H) (see Fig. 2).

We found that the ¹
%
+¹"4.2 K at high H, but ¹

%
<¹

in the limit of small H. We argue that the non-zero IM
#
(0)

and the increase of ¹
%
at small values of H are both due to

the presence of a small residual pinning potential in the
junction. Our analysis shows that in the presence of both
pinning potentials (small local potential and a large one

controlled by H) Eq. (1) conserves its form but ¹
%

de-
pends on IM

#
(H)

¹
%
K

¹

(1!(2/3)IM
#
(0)/IM

#
(H))

. (3)

Using this expression for ¹
%
and the value of IM

#
(0) we "nd

good agreement with experimental data (solid line in
Fig. 2).
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