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Resolving photon number states in a superconducting circuit
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Electromagnetic signals are always composed of photons, though in the circuit domain those sig-
nals are carried as voltages and currents on wires, and the discreteness of the photon’s energy is
usually not evident. However, by coupling a superconducting qubit to signals on a microwave trans-
mission line, it is possible to construct an integrated circuit where the presence or absence of even a
single photon can have a dramatic effect. This system[2] is called circuit quantum electrodynamics
(QED) because it is the circuit equivalent of the atom-photon interaction in cavity QED. Previously,
circuit QED devices were shown to reach the resonant strong coupling regime, where a single qubit
can absorb and re-emit a single photon many times[27]. Here, we report a circuit QED experiment
which achieves the strong dispersive limit, a new regime of cavity QED in which a single photon
has a large effect on the qubit or atom without ever being absorbed. The hallmark of this strong
dispersive regime is that the qubit transition can be resolved into a separate spectral line for each
photon number state of the microwave field. The strength of each line is a measure of the probability
to find the corresponding photon number in the cavity. This effect has been used to distinguish
between coherent and thermal fields and could be used to create a photon statistics analyzer. Since
no photons are absorbed by this process, one should be able to generate non-classical states of light
by measurement and perform qubit-photon conditional logic, the basis of a logic bus for a quantum
computer.

Cavity QED[15] is a test-bed system for quantum
optics[28] that allows investigations into fundamental
questions on quantum measurement and decoherence,
and enables applications such as squeezed light sources
and quantum logic gates. To achieve this, an atom is
placed between two mirrors, forming a cavity that con-
fines the electromagnetic field and enhances the atom-
photon interaction strength. Cavity QED can be char-
acterized by this interaction strength, g, and the atom-
cavity detuning, ∆, resulting in several regimes which
we represent with the phase diagram in Figure 1. Reso-
nance occurs when the detuning is less than the interac-
tion strength (∆ < g, blue region in Fig. 1), allowing real
excitations to be exchanged between the atom and cavity,
resulting in phenomena such as enhanced spontaneous
emission into the cavity mode (the Purcell effect[20]).
The resonant strong coupling regime of cavity QED is
achieved when the coupling rate, g, is larger than the in-
verse atom transit time through the cavity, 1/T , and the
decay rates of the atom, γ, and cavity, κ. In this regime
the photon and atom are coherently coupled, and a single
photon is periodically absorbed and re-emitted (the vac-
uum Rabi oscillations) at a rate 2g. Strong coupling has
traditionally been studied in atomic systems using alkali
atoms[25], Rydberg atoms[21], or ions[13, 14]. More re-
cently strong coupling with solid state systems has been
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achieved with superconducting circuits[8, 12, 27] and ap-
proached in semiconducting quantum dots[22, 29]. The
resonant strong regime of cavity QED is interesting be-
cause the joint system becomes anharmonic, allowing ex-
periments in non-linear optics and quantum information
at the single photon level.

In the dispersive (off-resonant) limit, the atom-cavity
detuning is larger than the coupling, ∆ ≫ g and only vir-
tual photon exchange is allowed, keeping the atom and
photon largely separable (red and white regions in Fig.
1). The atom (photon) now acquires only a small pho-

tonic (atomic) component of magnitude (g/∆)2, and an
accompanying frequency shift, 2χ = 2g2/∆. In this case
the system is described to second order in g/∆ by the
quantum version of the AC Stark Hamiltonian[2]:

H = h̄ωr

(

a†a + 1/2
)

+ h̄ωa σz/2 + h̄χ
(

a†a + 1/2
)

σz

The first two terms describe a single photon mode as
a harmonic oscillator and an atom or qubit as a two-
level pseudo-spin system. The third term is a disper-
sive interaction that can be viewed as either an atom
state-dependent shift of the cavity frequency or a pho-
ton number-dependent light shift (the Stark plus Lamb
shifts) of the atom transition frequency. This interac-
tion means that when the atom state is changed, an
energy 2h̄χ is added or removed to or from each cav-
ity photon. This interaction is of particular interest be-
cause it commutes with the individual atom and pho-
ton terms, meaning that it is possible to do a quantum
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non-demolition[7, 10] (QND) measurement of either the
atom state by measuring the phase shift of photons in
the cavity[26] or photon number using the atomic Stark
shift[5, 23]. The demolition of a measurement is quanti-
fied by the probability that in the absence of any other
decay mechanism, a repetition of the measurement will
yield a different result. To realize a QND measurement,
one could drive the atom at the Stark shifted atom fre-
quency (ωa + 2nχ), selectively exciting it if there are
exactly n photons in the cavity, and then measure the
atom state independently to readout the result. In our
experiment, the cavity transmission is used to measure
the atom state, so while the interaction is QND, the de-
tection performed here is not. A more fundamental lim-
itation for any cavity QED experiment arises from the
second order mixture of the atomic and photonic states,
creating a probability, (g/∆)2, that a measurement of
photon number will absorb a photon or a measurement
of the atomic state will induce a transition, demolishing
the measured state.

In analogy with the strong resonant case, the strong

dispersive limit can be entered when the Stark shift
per photon is much larger than the decoherence rates
(2χ > γ, κ, 1/T white region in Fig. 1), while the de-

FIG. 1: A phase diagram for cavity QED. The parameter
space is described by the atom-photon coupling strength,
g, and the detuning ∆ between the atom and cavity fre-
quencies, normalized to the rates of decay represented by
Γ = max [γ, κ, 1/T ]. Different cavity QED systems, includ-
ing Rydberg atoms, alkali atoms, quantum dots, and circuit
QED, are represented by dashed horizontal lines. The green
circle represents the parameters used in this work. In the
blue region the qubit and cavity are resonant, and undergo
vacuum Rabi oscillations. In the red, weak dispersive, re-
gion the ac Stark shift g2/∆ < Γ is too small to dispersively
resolve individual photons, but a QND measurement of the
qubit can still be realized by using many photons. In the
white region, quantum non-demolition measurements are in
principle possible with demolition less than 1%, allowing 100
repeated measurements. In the green region single photon
resolution is possible but measurements of either the qubit or
cavity occupation cause larger demolition.

molition remains small (g/∆)2 ≪ 1. The small number-
dependent frequency shift present in the weak dispersive
regime (red region Fig. 1), becomes so large that each
photon number produces a resolvable peak in the atomic
transition spectrum, allowing the measurement in this
paper. It has been proposed that the dispersive pho-
ton shift could be used to make a QND measurement
of the photon number state of the cavity using Rydberg
atoms[4]. Previously attainable interaction strengths re-
quired photon number detection experiments to employ
absorptive quantum Rabi oscillations in the resonant
regime[6], allowing a QND measurement[17] restricted to
distinguishing only between zero and one photon. More
recently, a non-resonant Rydberg atom experiment en-
tered the strong dispersive limit, measuring the single
photon Wigner function with demolition (g/∆)2 = 6%,
in principle allowing ∼ 15 repeated measurements[1]. We
present here a circuit QED experiment clearly demon-
strating the strong dispersive regime, resolving states of
up to ten photons, and having demolition (g/∆)2 < 1%,
which should allow up to ∼ 100 repeated QND measure-
ments.

In circuit QED[2, 26] the “atom”-photon interaction is
implemented by a Cooper Pair Box (CPB)[3], chosen for
its large dipole moment, capacitively coupled to a full-
wave one-dimensional transmission line resonator. The
resonator’s reduced transverse dimensions, microns in-
stead of centimeters (Fig. 2), enhance the energy density
a million times over a three-dimensional microwave cav-
ity. This large energy density, together with the large ge-
ometric capacitance (dipole moment) of the CPB, yield
an interaction strength that is g/ωa,r = 2% of the to-
tal photon energy. This coupling, ten-thousand times
larger than currently attainable in atomic systems, al-
lows circuit QED to overcome the larger decoherence
rates present in the solid-state environment, maintaining
g/γeff = 40 possible coherent vacuum Rabi oscillations in
the strong resonant regime, where γeff = (γ + κ)/2. The
equivalent comparison of the dispersive interaction to de-
coherence examines the Stark shift per photon in relation
to the qubit decay, 2χ/γ = 6, and determines the resolu-
tion of photon number peaks. Comparing instead to the
cavity lifetime yields an estimate of the maximum num-
ber of peaks that could possibly be resolved, 2χ/κ = 70,
and determines the contrast of a qubit measurement by
the cavity. These values of our parameters place the sys-
tem well into the strong dispersive regime.

The photon number dependent frequency shift of the
qubit is detected by performing spectroscopy on the
qubit-cavity system (Fig. 2e). Photons are placed in the
cavity by applying a microwave signal (the cavity tone)
at frequency (ωrf) near the cavity resonance (Fig. 2e).
A spectrum is taken by sweeping the frequency (ωs) of a
second microwave signal (the spectroscopy tone), which
probes the qubit absorption, without significantly popu-
lating the resonator as it is detuned by many linewidths
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FIG. 2: Cooper Pair Box (CPB) inside cavity and spectral features of the circuit QED system. a. An on-chip coplanar waveguide
cavity with resonant frequency ωr/2π = 5.7GHz. b. The CPB, placed at a voltage anti-node of the coplanar waveguide (CPW)
cavity (metal is beige, substrate is dark), consists of two large superconducting islands (light blue) connected by a pair of
Josephson tunnel junctions (purple in c). Both the CPB and cavity are made from Aluminum, a superconductor at the
experiment temperature, T = 20 mK. The transition frequency between the lowest two CPB levels is ωa/2π ≈

√
8EJEC/h =

6.9 GHz, where the Josephson energy EJ/h = 11.5 GHz and the charging energy EC/h = e2/2CΣh = 520 MHz. Both the large
dipole coupling, g/2π = 105 MHz, that allows access to the strong dispersive regime, and the small charging energy are due to
the large geometric capacitance of the box islands to the resonator. With these parameters the transition frequency from ground
to first excited state is larger by 10% than the next lowest transition, allowing the two levels to be addressed uniquely, though
higher levels do contribute dispersive shifts. Most notably the nearest level causes a negative effective Stark shift per photon,
2χeff = −17MHz, as well as a Lamb shift-like dressing of the resonator and qubit frequencies. This dispersive shift is larger
than the linewidths of both the qubit (γ/2π = 1.9 MHz) and cavity (κ/2π = 250 kHz). d. Dispersive cavity-qubit energy levels.
Each energy level in the qubit-cavity Hamiltonian is labeled by the qubit state, where right is excited |e〉, and left is ground,
|g〉, while |n〉, denotes the number of photons in the cavity. The dashed portion represents the qubit/cavity energy levels with
no interaction (g = 0), where the solid lines show the eigenstates as they are dressed by the dispersive interaction. Transitions
from |n〉 → |n + 1〉 show the qubit-dependent cavity shift. Transitions at constant photon number from |g〉 |n〉 → |e〉 |n〉 (left
to right) show a photon number dependent frequency shift 2nχeff . e. Each transition in d can be measured in the cavity-qubit
spectral response. The qubit state-dependent spectral response of the cavity is shown in the bottom left. To measure the qubit
state, and also to populate the cavity in Figs. 3 and 4a-b, the cavity is driven with a coherent tone at ωrf , that is blue detuned
from the cavity by several linewidths to not induce any cavity nonlinearity. To attain a thermal distribution the cavity was
driven with gaussian noise spanning the cavity according to the red envelope. The qubit spectrum is shown at the bottom
right, and is detuned from the cavity by ∆/2π = 1.2 GHz ≫ g/2π. Measurements are performed by measuring qubit response
to being driven with a spectroscopy tone, ωs, by monitoring transmission at ωrf . Because χ > γ each photon shifts the qubit
transition by more than a linewidth giving a distinct peak for each number of photons in the cavity. The maximum number of
resolvable peaks is determined by 2χ/κ.

(ωs − ωr ≫ κ). The detection is completed by exploiting
the dual nature of the qubit-photon coupling, reusing
the cavity photons as a measure of cavity transmission,
demonstrated previously[2, 23, 26, 27] to measure the
qubit excited state population. The measured transmis-
sion amplitude (Figs. 3-4) is an approximate measure
of the actual qubit population, which could in principle
be measured independently. For clarity the transmis-
sion amplitude in Figures 3-4 is plotted from high to low
frequency. In order to reduce non-linearities in the re-
sponse, the cavity tone was applied at a small detuning
from the resonator frequency when the qubit is in the
ground state δ/2π = (ωrf − ωg

r ) /2π = 2 MHz which also
slightly modifies the peak splitting[9] (Fig. 2e).

The measured spectra reveal the quantized nature of
the cavity field, containing a separate peak for each pho-
ton number state (Fig. 3)[9, 11]. These peaks approxi-
mately represent the weight of each Fock state in a co-
herent field with mean photon number n, which is varied

from zero to seventeen photons. At the lowest photon
powers, nearly all of the weight is in the first peak, cor-
responding to no photons in the cavity, and confirming
that the background cavity occupancy is nth < 0.1. As
the input power is increased, more photon number peaks
can be resolved and the mean of the distribution shifts
proportional to n. The data agree well with numerical so-
lutions at low powers (solid lines in Fig. 3) to the Marko-
vian Master equation[9, 28] with three damping sources,
namely the loss of photons at rate κ/2π = 250 kHz, en-
ergy relaxation in the qubit at rate γ1/2π = 1.8 MHz and
the qubit dephasing rate γφ/2π = 1.0 MHz. However ad-
equate numerical modeling of this strongly coupled sys-
tem at higher photon numbers is quite difficult and has
not yet been achieved.

In earlier work[5, 23] in the weak dispersive limit
(χ/γ < 1), the measured linewidth resulted from an en-
semble of Stark shifts blurring the transition, while here
in the strong limit (χ/γ > 1) each member of the ensem-
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ble is individually resolved. In the spectra measured here
(Fig. 3), the linewidth of a single peak can be much less
than the frequency spread of the ensemble, but changes
in photon number during a single measurement can still
completely dephase the qubit. Taking this into account
yields a predicted photon number dependent linewidth,
γn = γ/2 + γφ + (n + n)κ/2 for the nth peak[9]. The

FIG. 3: Direct spectroscopic observation of quantized cavity
photon number. Qubit spectra with coherent cavity drive
at different average cavity occupations (n). The spectra
have resolved peaks corresponding to each photon number.
The peaks are separated by 2χeff/2π = −17 MHz. Approx-
imately ten peaks are distinguishable. The data (blue) is
well described by numerical simulations (red) with all param-
eters predetermined except for a single frequency offset, over-
all power scaling, and background thermal photon number
(nth = 0.1) used for all traces. Computational limitations
prevented simulations of photon numbers beyond ≈ 3. At the
lowest power nearly all of the weight is in the |0〉 peak, mean-
ing that the cavity has a background occupation less than
(nth < 0.1). Peaks broaden as (n + n)κ plus some additional
contributions due to charge noise. At higher powers the peaks
blend together and the envelope approaches a gaussian shape
for a coherent state. Since χ < 0, spectra are displayed from
high to low frequency, and also have been normalized and
offset for clarity.

lowest power peak (in the n = 0.02 trace) corresponds to
zero photons and measures the unbroadened linewidth,
γ0/2π = 1.9 MHz. When n = 2χeff/κ the peaks should
begin to overlap once more, returning the system to the
classical field regime. If this effect were the only limi-
tation, we might hope to count as many as 70 photon
number peaks before they merge. In practice the higher
number peaks are also more sensitive to charge fluctua-
tions in the Cooper pair box, which limits us to about 10
resolvable photon states in this measurement.

The relative area under each peak in the transmission
amplitude (Fig. 4) contains information about the pho-
ton statistics of the cavity field. We can compare two
cases having the same average cavity occupation (n ∼ 3),
but containing either a coherent field (Fig. 4a) or a ther-
mal field (Fig. 4b). To create the thermal field, gaussian
noise was added in a wide band around the cavity (red
in Fig. 2e). The coherent and thermal states are clearly
distinguishable, with the weights of the peaks being non-
monotonic for a coherent distribution while the thermal
distributions were monotonically decreasing for all noise
intensities measured. However for the sample parame-

FIG. 4: Qubit spectrum distinguishes between coherent and
thermal distributions. a. Reduction in transmitted ampli-
tude is plotted as a proxy for qubit absorption for the case
of a coherent drive with n = 3 photons. b. Spectrum when
cavity is driven with Gaussian white noise approximating a
thermal state also with n = 3. The coherent spectrum is
clearly non-monotonic and qualitatively consistent with the
Poisson distribution, P (n) = e−nnn/n!, while the thermal
spectrum monotonically decreases consistent with the Bose-
Einstein distribution P (n) = nn/ (n + 1)n+1.
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ters and measurement protocols used here, several effects
prevent quantitative extraction of photon number prob-
abilities from the data. First the inhomogeneous broad-
ening of the higher number peaks due to charge noise
prevents independent extraction of their areas. Addi-
tionally, though it has been analytically shown that in
the qubit absorption spectrum should accurately repre-
sent the cavity photon statistics[9], this experiment did
not have an independent means to measure the qubit, and
there are imperfections in mapping the qubit spectrum
onto the cavity transmission. Finally, numerical simula-
tions show that spectroscopic driving of the qubit results
in complex dynamics which squeezes the cavity photon
number, pointing to a path to create exotic states of light,
but also obscuring the initial photon statistics. The mea-
sured data is consistent with numerical predictions which
do take into account such squeezing effects (see Fig. 3)
for photon numbers (n ≤ 3) which we could simulate.
While these effects are large in the present experiment,
an independent measurement of the qubit could be in-
troduced using a second cavity or Josephson-bifurcation
amplifier[24], allowing the realization of a quantitative
photon statistics analyzer. Previous experiments have
also measured analogous statistics of other Bosonic sys-
tems including phonons in an ion trap[13, 14], excita-
tions in a single electron cyclotron oscillator[19], and the
number of atoms in a Bose-Einstein condensate passing
through a cavity[18].

The results obtained here also suggest a method for
photon-qubit conditional logic. The qubit response is
now strongly dependent on the number of photons in the
cavity. For example, a controlled-not (CNOT) gate be-
tween a photon and qubit could be implemented by ap-
plying a π control pulse at the frequency corresponding
to one photon in the cavity. This would flip the qubit if
there were exactly one photon in the cavity, but do noth-
ing for all other number states. Since the qubit does not
absorb the cavity photon, the number is unchanged after
the operation and could be used to entangle with distant
qubits. A photon number based gate is analogous to the
phonon common mode coupling used in ion-traps[16], but
since the photons travel along transmission lines and not
through qubits themselves, many qubits can be placed
in a single wavelength, and the photons could be sent to
distant qubits, including those in other cavities.

The observation of resolved photon number peaks in
the qubit spectrum demonstrates a new regime for cavity
QED systems, the strong dispersive limit. Measurement
of the spectrum directly reveals the discrete nature of
the microwave field inside the on-chip cavity. The qubit
spectrum is used to distinguish field states with different
photon statistics. Further exploitation of this exception-
ally large vacuum Rabi coupling should enable quantum
computing using transmission line cavities as a quantum
bus, and allow preparation of quantum states of light for
use in quantum communication and non-linear optics.
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