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We study how the spontaneous relaxation of a qubit affects a continuous quantum non-demolition
measurement of the state of the qubit. Given some noisy measurement record Ψ, we seek an estimate
of whether the qubit was initially in the ground or excited state. We investigate four different
measurement protocols, three of which use a linear filter (with different weighting factors) and a
fourth which uses a full non-linear filter that gives the theoretically optimal estimate of the initial
state of the qubit. We find that relaxation of the qubit at rate 1/T1 strongly influences the fidelity of
any measurement protocol. To avoid errors due to this decay the measurement must be completed
in a time that decrease linearly with the desired fidelity while maintaining an adequate signal to
noise ratio. We find that for the non-linear filter the predicted fidelity, as expected, is always better
than the linear filters and that the fidelity is a monotone increasing function of the measurement
time. For example, to achieve a fidelity of 90%, the box car linear filter requires a signal to noise
ratio of ∼ 30 it a time T1 whereas the non-linear filter only requires a signal to noise ratio of ∼ 18.

I. INTRODUCTION

Quantum non-demolition (QND) measurements play a
central role in the theory and practical implementation of
quantum measurements [1]. In a QND measurement, the
interaction term in the Hamiltonian coupling the system
to the measuring apparatus commutes with the quantity
being measured so that this quantity is a constant of the
motion. This does not imply that the quantum state of
the system is totally unaffected, but it does imply that
the measurement is repeatable. For example, a Stern-
Gerlach measurement of σ̂z for a spin 1/2 particle ini-
tially prepared in an eigenstate of σ̂x will randomly yield
the results +1 and −1 with equal probability. However,
all subsequent measurements of σ̂z will yield exactly the
same result as the initial measurement (provided there
are no perturbations which cause demolition).

The fact that QND measurements are repeatable is of
fundamental practical importance in overcoming detec-
tor inefficiencies. A prototypical example is the electron-
shelving technique [2, 3] used to measure trapped ions.
A related technique is used in present implementations
of ion-trap based quantum computation. Here the (ex-
tremely long-lived) hyperfine state of an ion is read out
via state-dependent optical fluorescence. With properly
chosen circular polarization of the exciting laser, only
one hyperfine state fluoresces and the transition is cy-
cling; that is, after fluorescence the ion almost always
returns to the same state it was in prior to absorbing
the exciting photon. Hence the measurement is QND.
Typical experimental parameters [4] allow the cycling
transition to produce N ∼ 106 fluorescence photons.
Given the photomultiplier quantum efficiency and typi-
cally small solid angle coverage, only a very small number
n̄d will be detected on average. The probability of getting
zero detections (ignoring dark counts for simplicity) and
hence misidentifying the hyperfine state is P (0) = e−n̄d .

Even for a very poor overall detection efficiency of only
10−5, we still have n̄d = 10 and nearly perfect fidelity
F = 1 − P (0) ∼ 0.999955. It is important to note that
the total time available for measurement is not limited
by the phase coherence time (T2) of the qubit or by the
measurement-induced dephasing [5, 6, 7, 8], but rather
only by the rate at which the qubit makes real transi-
tions between measurement (σ̂z) eigenstates. In a per-
fect QND measurement there is no measurement-induced
state mixing [6] and the relaxation rate 1/T1 is unaffected
by the measurement process.

The ability to read out a qubit with high fidelity is
of central importance to the successful construction of
a quantum computer [9]. In order to successfully mea-
sure a qubit, its quantum state must be mapped into a
piece of classical information by measuring the relative
occupation of its two states with the highest possible fi-
delity. Possible qubit implementations include supercon-
ducting circuits, silicon based electron and nuclear spins,
and trapped ions, among others [10, 11, 12, 13, 14, 15,
16, 17, 18, 19]. In order for qubits prepared in different
states to be distinguishable, the measurement must be
completed before the excited qubits decay[6, 20]. Many
atomic qubits have sufficiently long lifetimes so that re-
laxation is not a major concern [10, 12, 16], but most solid
state qubits have lifetimes on the order of microseconds
or less, and spontaneous relaxation plays a significant role
in the measurement. The qubit relaxation affects differ-
ent measurement schemes differently, but in all cases, it
can limit the maximum fidelity.

Although the behavior of a qubit during continuous
measurement has been studied using Monte Carlo sim-
ulations [21], no attempt has been made to derive an
analytical expression for the probability distribution of
the measurement or to study how spontaneous emis-
sion impacts the measurement fidelity. This is at least
partially because there exist very few high fidelity con-
tinuous QND measurements, and even fewer that oper-
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ate in a regime where qubit relaxation is a limiting fac-
tor. With the application of low temperature amplifiers,
superconducting continuous measurements can achieve
high enough fidelities that single shot measurements, re-
quired for multi-qubit operation, are now becoming feasi-
ble [15, 19, 22, 23, 24, 25, 26, 27, 28, 29]. These measure-
ments have found asymmetries between the probability
distributions for the integrated signal corresponding to
the ground and excited states, but could not accurately
predict them.

Here we find that when we use a measurement pro-
tocol that only records the integrated signal, the qubit
relaxation induces asymmetry in the probability distri-
butions, and that with a sufficiently precise detector,
the distributions become distinctly non-gaussian. Un-
like measurement of a perfect (i.e. non-decaying) qubit
where fidelity is always improved by a longer measure-
ment, we show that there is some optimal measurement
fidelity that depends on the signal to noise ratio (SNR)
of the detector and the filter used. The first filter we
consider is the linear box car filter and optimize over the
integrated time tf . Choosing a longer or shorter inte-
gration time will lower the fidelity of the measurement.
Next we show that by choosing a filter that gives expo-
nentially less importance to results at later times slightly
increases the fidelity. We then numerically find the opti-
mal linear filter and compare these linear filters to a non-
linear filter that yields the theoretically optimal estimate
of the initial state of the qubit given some measurement
record Ψ. We find that we can reach the same fidelity as
the linear filters at a substantially lower SNR. Further-
more, due to the nature of the updating protocol, the
fidelity is a non-decreasing function of the measurement
time. In summary, in this paper we determine the opti-
mal measurement fidelity given four measurement proto-
cols for continuous measurement experiments currently
being performed, and also provides a guideline for the
necessary detector signal to noise ratio in order to reach
a particular desired fidelity in future experiments.

There are two major ways of measuring qubits. The
first method is a latching measurement, for example by
having the qubit state modify the switching current (or
state) of an adjacent Josephson junction [25, 26] or the
bifurcation point of the non-linear Josephson plasma os-
cillation [27, 28, 29]. In such latching measurements, the
qubit is measured very quickly with very high signal to
noise, and after only a short waiting time [11, 13, 25, 29].
Some versions of such strong measurements can in prin-
ciple be QND [29]. The second method is to perform
a sequence of repeated or weak continuous quantum
non-demolition (QND) measurements, which each leave
the populations of the qubit unchanged. Several recent
experiments with solid-state qubits [19, 30, 31], have
used continuous QND measurement schemes in which the
qubit lifetime imposes the main limitation on the mea-
surement fidelity, for which the analysis of this paper
should apply.

It is not just continuous measurements that are af-

fected by qubit relaxation. For example, consider an
idealized latching measurement scheme where a qubit is
prepared in an eigenstate, but there is some finite arming
time tarm before a perfect measurement is made. In this
case, a qubit prepared in the ground state will always be
measured correctly, but a qubit prepared in the excited
state may have decayed during tarm and be misidenti-
fied. Thus if tarm is not infinitesimally small, the qubit
lifetime places a limit on fidelity even with a perfect de-
tector.

II. QUBIT WITH INFINITE LIFETIME

It is worthwhile to first consider the case when the
qubit cannot relax from the state it is initially prepared
in, it is “fixed” for all time. This allows us to formalize
our intuitive understanding of a general continuous mea-
surement and to give us a result against which we can
compare the finite lifetime case. We consider the mea-
surement of a qubit with two states |+〉 (excited) and
|−〉 (ground) and assume that the measurement result is
given by the actual value of the qubit state plus Gaus-
sian noise. That is, the measurement is faithful and given
that the system is in state i = ±1 our detector for a time
interval dτ outputs ψ(τ) with statistics

P (ψ|i) =

√

dτ SNR

2π
exp[−(ψ − i)2dτ SNR/2]. (2.1)

For convenience we have also introduced a dimensionless
time τ = t/T1 where T1 is an arbitrary but finite number,
it will become the relaxation lifetime when we treat the
finite lifetime case. Here SNR is the ratio of integrated
signal power to noise power. It is linear in the integration
time and we will adopt the convention of specifying the
SNR as that achieved after integrating for time T1.

From this distribution we can write ψ(τ) in terms of
the Wiener increment dW (τ) [32] as

ψ(τ)dτ = i±(τ)dτ +
√

SNR−1dW (τ). (2.2)

Here we have introduced the subscript ± to indicate a
possible realization of the dynamics of the qubit given
the initial condition ±1. For this case the qubit can be
initialized in either state, but because it has an infinite
lifetime, it is fixed in whatever state it starts in for the
duration of the measurement. That is, i±(τ) = ±1.

We define our measurement signal s as the output of
the detector integrated over time τf

s =

∫ τf

0

dτ ψ(τ). (2.3)

Formally we are restricting ourselves here to a simple box
car linear filter which uniformly weights the measurement
record ψ(τ) in the interval 0 < τ < τf . Using Eq. (2.2)
it is simple to carry out the above integral and rewrite
the measurement signal as s±(τf) = ±τf + GRV[0, σ2]
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where GRV[0, σ2] is a Gaussian random variable of mean

0 and standard deviation σ =
√

τf/SNR. The signals
then follow the familiar Gaussian distributions

P fixed
± (s) =

1

σ
√

2π
e−(s∓τf)2/(2σ2). (2.4)

Because these distributions are symmetric about s = 0,
the most obvious analysis is to set a signal threshold
νth = 0 and call every measurement with s > νth a (+1)
state, and every measurement with s < νth a (−1) state.
Calculation of fidelity in this case is accomplished using
the definition

F ≡ 1 −
∫ νth

−∞
dsP+(s) −

∫ ∞

νth

dsP−(s). (2.5)

For the case of infinite qubit lifetime we have the simple
result

F = erf

(

√

τfSNR

2

)

. (2.6)

A fidelity of zero corresponds to a completely random
measurement that extracts no information, a fidelity of
one corresponds to a perfect faithful measurement, and
in between the measurement conveys varying degrees of
certainty. As τf becomes large, Eq. (2.5) predicts that the
fidelity rapidly approaches unity. Higher SNR serves to
speed up the convergence, but as long as SNR is non zero,
any desired fidelity is attainable simply by measuring the
qubit for long enough. In table I, the required SNRfixed is
listed in order to achieve a given fidelity within T1. Note
the same results for the fidelity would be obtained if we
used the optimal non-linear filter of Sec. VI. That is, for
a qubit with infinite lifetime the simple box car filter is
equivalent to the optimal non-linear filter, it is only when
we include relaxation this is not the case. This will be
discussed in detail in the next four sections.

III. BOX CAR LINEAR FILTER

A. Probability Distributions for QND

Measurement

Here we consider the same measurement protocol as
in Sec. II, however unlike a qubit with infinite lifetime,
where both states behave similarly, a qubit with a finite
lifetime has a fundamental asymmetry in how the excited
and ground states behave. We assume (in our model)
that the excited state decays at rate 1/T1 but the transi-
tion rate upward out of the ground state is zero. A qubit
prepared in the ground state will never experience any
excitations, so it can be treated much the same as the
fixed qubit discussed above and hence P−(s) = P fixed

− (s).
By contrast, an initially excited qubit will produce an
ensemble averaged output which will decay exponentially
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FIG. 1: (Color online) Example detector output as a function
of time for a continuous QND measurement with SNR = 570,
(dτ = 1E−4) which allows for a measurement fidelity of 99%.
The dashed red line corresponds to a large ensemble average
of qubit outputs, and decays exponentially with characteristic
time T1 (is standard units). The solid blue line corresponds
to the measurement record for a particular single shot. At
this value of SNR, the jump in output is clearly visible and
occurs at τd.

with characteristic dimensionless time τ1 ≡ 1. Although
most qubits dephase in some shorter dimensionless time
τ2, our only concern here is the relative population of the
two qubit states, so we are not limited by decoherence of
the qubit. For a single qubit, this translates into a sin-
gle, abrupt relaxation of the qubit at some dimensionless
time τd that is exponentially distributed with mean di-
mensionless time 1, P (τd) = exp(−τd). That is, if the
qubit was initially in the excited state then i±(τ) would
obey

i±(τ) = θ(τd − τ) − θ(τ − τd). (3.1)

Thus given a possible realization i±(τ), we can generate a
typical record an experimentalist would measure by using
Eq. (2.2). A typical trajectory for ψ(τ) is shown in Fig. 1
for a SNR of 570. Here we see at this value of SNR, the
jump in output is clearly visible and occurs at τd 6= 1
(td 6= T1).

In the case where the qubit happens to decay early,
τd ≪ 1, the signal s from a qubit initially prepared in
the excited state would be almost indistinguishable from
that of a qubit initially prepared in the ground state, and
even if the measurement apparatus were nearly perfect,
almost no information could be extracted. The proba-
bility distribution P+(s) for the measurement signal of
an initially excited qubit can be determined analytically
with a simple derivation. This will allow a more quan-
titative discussion of fidelity, and will eventually allow
for optimization of integration time, τf . The critical dif-
ference between the infinite lifetime system described in
section II and an actual QND measurement is that s is
now a function not only of the dimensionless integration
time τf , but also the exponentially distributed random
relaxation time τd.
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If the qubit is initially in the excited state, then from
Eqs. (2.2), (2.3) and (3.1) a possible realization of s±
will be

s± = τfθ(τd − τf) + (2τd − τf)θ(τf − τd)

+GRV[0, σ2]. (3.2)

That is, the probability distribution for s given a realiza-
tion with a decay at time τd is

P+(s|τd) =
1√
2πσ

exp[−(s− τf)
2/2σ2]θ(τd − τf)

+
1√
2πσ

exp{−[s− (2τd − τf)]
2/2σ2}

×θ(τf − τd), (3.3)

and from this one can easily obtain the probability dis-
tributions for s by averaging over all possible realizations
(decay times). Doing this gives

P+(s) = 1√
2πσ

e−(s−τf)2/(2σ2)−τf + 1
4e

−(s+τf)/2

eσ
2/8{erf

(

σ2−2(s−τf )
2
√

2σ

)

− erf
(

σ2−2(s+τf )

2
√

2σ

)

} (3.4)

Although it does not figure directly into this analysis,
it is not difficult to expand this treatment to consider
a measurement with finite “demolition” that stimulates
both excitation and relaxation of the qubit. In this case,
both P+ and P− will be non-gaussian, because the qubit
may excite and relax several times during the measure-
ment interval. To calculate the distributions, all we need
to do is extend the possible realization to include multi-
ple relaxations and excitations keeping in mind that the
relaxation and excitation times are not independent vari-
ables: τdn

must occur before τdn+1
. For stronger or less

ideal measurements, it may become necessary to include
these extra terms, but for now the demolition is taken
to be small compared to the spontaneous relaxation and
can be ignored.

The gaussian first term in Eq. (3.4) is dominant for
τf ≪ 1, and P+(s) is nearly symmetrical to P−(s). For
these fast measurements, there is little chance that the
qubit decays during the measurement, and the distribu-
tions will be very similar to those of fixed state bits. At
some point, the probability that the qubit has relaxed
will be large enough that it significantly affects the dis-
tributions. At this point, predictions based on the as-
sumption of no relaxation are no longer valid, and the
non-gaussian term in Eq. (3.4) becomes very important.
This effect can be seen in the non-gaussian tail of P+(s)
in the second two time cuts in Fig. 2.

A strongly non-gaussianP+ distribution is not required
for the fidelity to exhibit a maximum at some finite
measurement time. Even though for experiments with
SNR ≈ 1, the non-gaussian tail of P+ is not very promi-
nent, the asymmetry between the distributions in both
height and width is quite clear. For long enough dimen-
sionless integration times, a qubit initially in the excited
state will have probably relaxed relatively early in the
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FIG. 2: (Color Online) Evolution in time of probability dis-
tributions for QND measurement of qubits initialized in the
ground (blue) and excited (red) states for the box car linear
filter and a SNR = 30. For short τf , the distributions are
almost symmetrical because an excited qubit has probably
not decayed yet. As τf gets longer, the qubit is much more
likely to have decayed, and the mean of P+(s) begins to drift
back towards that of P

−
(s). At some optimal point in be-

tween, τf = τopt, and if the threshold νth is chosen so that
P+(νth) = P

−
(νth), the misidentified tails are minimized, and

fidelity is maximized.

measurement, so its mean should be very similar to that
of a qubit initially in the ground state, the distributions
will be almost identical, and all resolving power will be
lost.

B. Optimal Box Car Filter

The behavior of fidelity as a function of integration
time for a QND qubit measurement is very different from
a measurement of a fixed state qubit that never relaxes.
Recall that in the fixed state case, the fidelity eventu-
ally converges to one, independent of SNR. We define fi-
delity as we did for the fixed state case in Eq. (2.5). The
difference here is that because the distributions are not
necessarily symmetrical, the signal threshold νth is not
always zero. Maximizing F with respect to νth yields the
following implicit equation for νth

P+(νth) = P−(νth). (3.5)

As an aside we note that from this we see that we can
write the fidelity (optimized with respect to νth) in the
alternative form

F =
1

2

∫ +∞

−∞
ds |P+(s) − P−(s)| (3.6)

Despite the complications of finite lifetime, the integra-
tions in Eq. (2.5) can still be carried out analytically to
yield

F =
1

2
eσ

2/8e−(νth+τ)/2
{

erf

(

σ2 − 2(νth − τ)

2
√

2σ

)
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FIG. 3: (Color online) A) The fidelity F as a function of
time τf for all measurement protocols. The box car filtered
integrated signal is the red (solid) line and the exponential
filtered integrated signal is the blue (dashed) line. Here we see
that both these schemes have an optimal measurement time
and that the latter case is less sensitive to the measurement
time. The non-linear filter is shown by the green (dashed-
doted) line. Here we see that it is clearly better then the other
cases and that there is no optimal measurement time. B) The
threshold νth as a function of time τf for both the box car
filtered integrated signal (red solid line) and the exponential
filtered integrated signal (blue dashed line). In both subplots
the SNR after time τf = 1 is 10 and time is measured in units
of T1.

−erf

(

σ2 − 2(νth + τ)

2
√

2σ

)

}

(3.7)

The fidelity is maximized by numerically solving for νth
such that P−(νth) = P+(νth). Using the correct value of
νth(τf), it is straightforward to compute F (τf) and then
vary τf to obtain the optimal value of the integration
time.

Roughly speaking, fidelity is a measure of how separate
the probability distributions are, ranging between 0 for
complete overlap and 1 for no overlap. Fidelity is limited
by detector noise for short times and spontaneous relax-
ation for long times. For τf ≪ 1, the probability of a
relaxation during the measurement is very low, and the
fidelity behaves similarly to the fixed state case: it in-
creases with increasing τf . For longer τf ≈ 1, the qubit is
more and more likely to have relaxed during the measure-
ment and the mean of P+(s) will stop increasing linearly
and in the long time limit will actually decrease in time

as can be inferred from the decrease in optimal threshold
value plotted in Fig. 3 B) (red solid line). This implies
the existence of some intermediate time τopt(SNR) that
maximizes the fidelity, this is clearly seen in the red solid
line of Fig. 3 A) where the fidelity for a SNR= 10 has a
maximum of 0.79 at τopt = 0.34.

To find this time for a given value of SNR, we com-
pute F (τf), then numerically solve dF (τf)/dτf = 0 for
τf = τopt. The solution, Fopt ≡ F (τopt) is the best
possible fidelity for the simple linear box car filter; no
improvement can be made from this value without im-
proving the measurement apparatus or the qubit lifetime.
This optimal fidelity is only achievable by correctly set-
ting τf = τopt and νth. Any variation of these parameters
will reduce the fidelity. It should be pointed out that
while the condition P−(νth) = P+(νth) does maximize
the fidelity, it implies that the measurement protocol is
biased towards the ground state. That is, if the qubit is
prepared in the ground state we are more likely to assign
it correctly than if it was prepared in the excited state.
An unbiased measurement protocol is obtained by set-
ting νth such that

∫ νth
−∞ ds P−(s) =

∫∞
νth

ds P+(s). Doing

this results in a slightly lower optimal fidelity.
Since Fopt depends only on SNR, it is possible to first

derive the required signal to noise ratio after one lifetime,
and then choose the correct measurement time and signal
threshold required in order to attain any arbitrary fidelity
as shown in Fig. 4 (red solid line in part A) along with
the optimal measurement time (red solid line in part B).
For example, one standard initial goal is a fidelity of 90%,
sufficient to violate Bell’s inequalities [33]. As shown in
table I, this fidelity requires a minimum SNR of 30 after
time T1.

The following argument shows how rapidly the re-
quired SNR diverges for very high values of fidelity. For
large SNR, it is a good approximation to set the thresh-
old νth = 0 and then the fidelity is approximately

F0 = exp(−τf/2)erf
(

√

SNRτf/2
)

(3.8)

Optimizing this with respect to τf and then using the
asymptotic form for the error function of large argument
yields the following expression for the optimal integration
time

τopt ≈
2

SNR

{

x0 −
1

2
ln(x0)

}

(3.9)

where x0 ≡ ln
(

1+SNR√
π

)

.

Approximating the error function in Eq. (3.8) by unity
and neglecting ln(x0) relative to x0 leads to the following
simple asymptotic form for large SNR

F0 ∼ 1 − 1

SNR
ln

(

1 + SNR√
π

)

. (3.10)

This can me rewritten as in terms of the optimal mea-
surement time as F0 ∼ 1 − τopt/2. Here we see that
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F SNRfixed SNRBC (τopt) SNRexp (τopt) SNROL SNRNL τarm

50% 0.50 1.47 (0.82) 1.23 (1.59) 1.17 1.1 0.7
67% 1.0 4.05 (0.55) 3.58 (0.75) 3.10 2.9 0.40
90% 2.7 29.9 (0.17) 28.7 (0.18) 22.1 18. 0.11
95% 3.8 77.3 (0.087) 75.7 (0.090) 55.9 48. 0.05
99% 6.7 574. (0.018) 572. (0.018) 420 269. 0.01

TABLE I: The required minimum signal to noise ratio SNR after T1 and the optimal optimal measurement time, τopt for a
continuous measurement of a qubit with infinite lifetime (SNRfixed), a simple box car linear filter (SNRBC), an exponentially
decaying linear filter (SNRexp), the optimal linear filter (SNROL), and a non-linear Bayesian filter (SNRNL). The last column
is the maximum allowed waiting time τarm for an idealized latching (instantaneous) measurement with infinite signal to noise
performed after time τarm in order to achieve the desired fidelity F .
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FIG. 4: (Color online) Optimal fidelity Fopt (plot A) and
measurement time τopt (plot B) as functions of SNR. The
insert in plot B shows the optimal fidelity as a function of
the measurement time. The red (solid) line is for the box
car filter, blue (dashed) is for the exponential filter, black
(doted) is for the optimal linear filter and the green (dashed-
doted) is for the non-linear filter. Here we see that by using
the optimal non-linear filter we get an improved fidelity in
comparison to the simple linear filters. Particular values are
shown in table I.

to achieve the optimal, the measurement must be com-
pleted in a time that decreases linearly with the desired
fidelity. The slight deviations form this zeroth order re-
sult is shown in the insert of Fig. 4 B. This result is
consistent with the intuitive picture that to achieve a fi-
delity F = 1−η with η ≪ 1, we must have sufficient SNR
to be fooled only by those extremely early decays which
occur in time τ∗ ∼ 2η. This set of decays occurs with

probability ∼ 2η and is the main source of the infidelity.

IV. EXPONENTIAL DECAYING LINEAR

FILTER

In this section we consider the case when we include
an exponential weighting factor in our integrated signal
s. This is chosen as this would be the optimal linear fil-
ter if our signal was simply a decaying exponential with
a random initial amplitude, this can be proven by min-
imizing our estimate of the amplitude in a least square
sense. However, even though our signal on average is of
this form, in one particular run it is not. Thus this will
not be the optimal linear filter for estimating the initial
state of the qubit. For this reason we introduce an in-
tegration time τf and optimize the measurement fidelity
over this. That is, the signal s for this filter is given by,

s =

∫ τf

0

dτ ψ(τ)e−τ . (4.1)

As in the last section we first determine a possible s given
that the qubit started in the excited state. Doing this
gives

s± =

∫ τf

0

dτ
[

θ(τd − τ) − θ(τ − τd)
]

e−τ

+
√

SNR−1

∫ τf

0

dW (τ) e−τ (4.2)

and by treating the noise integral as simply a linear com-
bination of infinitesimal Gaussian variables gives

s± =
[

1 − 2e−τd + e−τf
]

θ(τf − τd)

+a θ(τd − τf) + GRV[0, σ2], (4.3)

where σ =
√

(1 − e−2τf )/2 SNR and a = 1 − e−τf . Here
we see that unlike before as the measurement time be-
comes large the variance saturates at (2 SNR)−1 rather
then continuing to increase linearly with time. That is,
we have designed our filter such that when all the infor-
mation about the qubit state has been lost into the T1

environment the noise in the integrated signal will remain
constant.
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Following the same procedure as before the excited
state distribution is

P+(s) =
1

4

[

erf

(

a+ s√
2σ

)

+ erf

(

a− s√
2σ

)]

+
1√
2πσ

exp

[

− (s− a)2

2σ2
− τf

]

. (4.4)

Repeating the above for the ground state initial condition

gives sf = −a+ GRV[0, σ2] and a ground state distribu-
tion of the form

P−(s) =
1√
2πσ

exp

[

− (s+ a)2

2σ2

]

. (4.5)

With the above two distributions the fidelity, as before,
can be solved analytically and in terms of the νth is

F =
σ√
8π

(

exp

[

− (a− νth)2

2σ2

]

− exp

[

− (a+ νth)2

2σ2

])

+
(e−τf + 1 − νth)

4

[

erf

(

a− νth√
2σ

)

+ erf

(

a+ νth√
2σ

)]

(4.6)

Using the same procedure as before we can numeri-
cally determine the νth which maximizes the fidelity. For
a SNR of 10 (in time T1) the fidelity as a function of mea-
surement time is shown in Fig. 3 A) as a blue dashed line.
Here we see as before there is an optimal measurement
time. To measure any longer than this time results in
a lower fidelity. The optimal fidelity and measurement
time are shown in Fig. 4 (blue dashed line) as a function
of the SNR. Here we see that by using this filter, the fi-
delity is slightly better than the simplest case (see table I
for some values), but more importantly the curvature of
the fidelity at τopt is less. This means that this filter is
less sensitive to errors in the measurement time. That is,
this protocol would be more practical to implement than
the simple box car integrated signal of Sec. III.

V. OPTIMAL LINEAR FILTER

In this section we calculate the optimal linear filter for
estimating the initial state of the qubit. We define the
linear signal s by the relation

s =

∫ ∞

0

k(τ)ψ(τ)dτ, (5.1)

where the kernel k(t) is unknown and is determined by
maximizing the measurement fidelity. This, as before,
is defined as the difference between the probability of us
making a correct assignment and an incorrect assignment
[Eq. (2.5)]. The assignment criteria we use is again if s is
above νth then we say the qubit was initially up and if it
is below νth then it was down. νth like k(t) is determined
by the maximization procedure which we will describe
now.

For an unknown kernel the signal conditioned on the
qubit being initially up will be given by

s+ = 2a(τd) − a(∞) + GRV(0, σ2), (5.2)

where

a(l) =

∫ l

0

k(τ ′)dτ ′ (5.3)

σ =

√

∫ ∞

0

k2(τ ′)dτ ′/SNR. (5.4)

If the qubit was initially in the ground state then the
signal would be

s− = −a(∞) + GRV(0, σ2). (5.5)

From the above equations the excited state and ground
state probability distribution for the signal s are

P+(s) =

∫ ∞

0

exp[−τd − (s− 2a(τd) + a(∞))2/2σ2]√
2πσ2

dτd

(5.6)

P−(s) =
exp[−(s+ a(∞))2/2σ2]√

2πσ2
(5.7)

and by using Eq. (2.5) the fidelity is

F =
1

2

∫ ∞

0

e−τderf
(2a(τd) − a(∞) − νth√

2σ

)

dτd

−1

2
erf
(−a(∞) − νth√

2σ

)

. (5.8)

Maximizing this gives the following set of coupled differ-
ential equations

dτa(τ) = k(τ) (5.9)

dτk(τ) = − exp{−τ − 2a(τ)[a(τ) − a(∞) − νth]/σ
2}

(5.10)

with the initial conditions k(0) = 1, a(0) = 0 and the
boundary condition k(∞) = 0. It is this latter condition
which determines νth. This system of equations can be
solved numerically using a shooting method [34]. The re-
sults are shown in Fig. 5 for a SNR of 1.0 and 172. Here
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FIG. 5: (Color online) The optimal linear filter for a SNR of
1.0 blue (dashed) and SNR of 172 red (solid) as a function of
time. The green (dashed-dotted) line in part B) is the optimal
box car linear filter for a SNR of 172 (τopt = 0.046).

we see that for the small SNR, the kernel k(τ) can be ap-
proximated well by exp(−βτ) where β is a fit parameter
that is approximately equal to 1 + SNR/2. In the large
SNR limit the k(τ) cannot be fit by an exponential. For
illustrative purposes the optimal linear filter is compared
with the optimal box car linear filter in Fig 5 B) for a
SNR of 172. Here we see that the time when the box car
linear filter turns off, is comparable with the time scale
of the optimal linear filter.

Numerically solving for k(τ) for a given σ we can use
Eqs. (5.4) and (5.8) to plot the fidelity of the optimal
linear filter as a function of the SNR. This is shown in
Fig. 4 as a dotted black line and in table I as column 4.
Here we see that the optimal linear filter out performs the
other linear filters and is almost as good as the optimal
filter (which is non-linear) and is described in the next
section.

VI. OPTIMAL NON-LINEAR FILTER

In the previous sections we considered only the case
where one looks at or only has access to the integrated
signal, s(τ). Here we assume that we have access to the
full record Ψ = {ψ(τ)} and ask how much better can we
do with a non-linear filter. In particular, given this record
what is our best guess at the initial state of the qubit.
Mathematically, our best guess can be represented by the
probability distribution P (i0|Ψ). This is the probability
that the initial condition i0 is ±1 given the record, Ψ. As
with all probability distributions, this will range from 0
to 1, and the closer it is to one the more we are certain
that the qubit was in the initial state i0 = ±1. This by
definition is the optimal protocol as it is the best estimate
of i0 given the complete set of information available.. To
find this distribution we use Bayes theorem,

P (i0|Ψ) =
P (Ψ|i0)P (i0)

∑

i0
P (Ψ|i0)P (i0)

, (6.1)

where P (i0) is the initial probability distribution and
P (Ψ|i0) is the probability that we would measure record
Ψ given that the experiment was initially prepared in
state i0. We will assume that our experiment can prepare
unbiased initial states and as such we take P (i0 ± 1) =
1/2. The conditional distribution P (Ψ|i0) is the proba-
bility that we would measure record, Ψ, given that the
experiment was initially prepared in state i0. Thus to
calculate P (i0|Ψ) all we need to do is calculate P (Ψ|i0).
This is the non-trivial step, but can be determined by

P (Ψ|i0) =
∑

p

P (Ψ|ip)P (ip|i0) (6.2)

where p labels a possible realization of the qubit trajec-
tory. That is, P (Ψ|i0) can be determined by taking the
ensemble average of P (Ψ|ip) for all possible realizations,
ip ( ip is given by Eq. (3.1) if the qubit is initially in the
excited state or ip = −1 if initially in the ground state).
From our simple model for the noise, Eq. (2.1), P (Ψ|ip) is
simply a multiplication of many Gaussians each centered
on the instantaneous value of ip.

For an excited state initial condition, the probability
of getting record Ψ will be given by

P (Ψ|i0 = 1) = A

∫ τf

0

dτd e
−τd exp

[

−
∫ τd

0

dτ(ψ(τ) − 1)2SNR/2

]

exp

[

−
∫ τf

τd

dτ(ψ(τ) + 1)2SNR/2

]

+e−τf exp

[

−
∫ τf

0

dτ(ψ(τ) − 1)2SNR/2

]

. (6.3)

Here the first term represents all possible trajectories that have had a decay in time τf (the integration time), the



9

second term represents all the trajectories that did not decay in this time, and A is the normalization constant. If
the qubit were initially in the ground state then the probability of getting record Ψ will be given by

P (Ψ|i0 = −1) = A exp

[

−
∫ τf

0

dτ(ψ(τ) + 1)2SNR/2

]

. (6.4)

Now that we have expressions for P (Ψ|i0) all that we need to do to get our best estimate of the initial state is to
use Eq. (6.1). Doing this gives

P (i0 = 1|Ψ) =
1

Norm

[
∫ τf

0

dτd e
−τd exp{[s(τd, 0) − s(τ, τd)]SNR} + e−τf exp[s(τf , 0)SNR]

]

(6.5)

P (i0 = −1|Ψ) =
1

Norm
exp[−s(τf , 0)SNR] (6.6)

where the two time integrated signal s(τ, τ ′) is

s(τ, τ ′) =

∫ τ

τ ′

dτ ′′ ψ(τ ′′) (6.7)

and the norm is simply

Norm =

∫ τf

0

dτd e
−τd exp[(s(τd, 0) − s(τ, τd))SNR] + e−τf exp[s(τf , 0)SNR] + exp[−s(τf , 0)SNR], (6.8)

Here we see that to solve this equation we need to
evaluate a double integral over a stochastic process. This
is impractical to solve numerically, however, as shown
in the appendix we can easily recast these integrals in
terms of two sets of two coupled stochastic differential
equations which require similar computational resources
to that used with the linear filters.

To show a typical trajectory for this estimated initial
condition, we randomly generated records for both an
excited and ground state initial condition. Rather then
plotting both P (i0 = 1|Ψ) and P (i0 = −1|Ψ) we define
z̃ = P (i0 = 1|Ψ) − P (i0 = −1|Ψ) (this is the estimator
that replaces s used in the linear filters), this will range
from −1 to 1 and the closer it is to one of these limits,
the more certain we are that the initial condition which
generated Ψ is this value. The results of this simulation
are shown in Fig. 6 A). The red (solid) line corresponds
to the case when the initial state was the ground state
and the blue (dashed) is for the excited state. Here we
see that for this typical trajectory our estimate is fairly
good at predicting the real initial condition and we are
almost certain for the excited case. However this is only
a typical trajectory and to get a better understanding of
the predictability of this method we use the same fidelity
measure as before, that is we subtract our wrong guesses
from our correct guesses. To be more specific, we define
the following assignment procedure: if z̃ > 0 then we
assign the qubit as up and if z̃ < 0 we assign it as down. If
z̃ is equal to zero we ignore the result (or flip an unbiased
coin to make our decision). Given this assignment criteria

we can define the fidelity as

F = lim
M→∞

1

2M

[

∑

z̃+1>0

−
∑

z̃+1<0

+
∑

z̃−1<0

−
∑

z̃−1>0

]

(6.9)

whereM is the number of randomly generated Ψ for both
+1 and −1 initial conditions. This is shown in Figs. 3 A)
and 4 A) as the green (dashed-doted) line for M = 104

(specific optimal fidelities are listed in table I). Here we
see that the fidelity is always better than the other cases
and that there is no optimal measurement time. That is,
unlike the box car filter and the expondential linear filter,
the fidelity is a non-decreasing function of the integration
time.

It should be noted that as in the previous protocols,
this is a biased measurement which favors ground state
preparations. This can be seen by looking closely at Fig.
6 B). This figure shows a histogram of 104 estimates when
the system is prepared in the excited state (dark blue bars
column 1) and the ground state (light red bars column 2)
for a SNR = 10. If we use our assignment procedure and
subtract the wrong guesses from the correct guesses for
each prepared initial state we get a fidelity of 0.92 for the
ground sate and 0.76 for the excited (an average fidelity
of 0.84). This is because when the qubit is prepared in
the excited state, rare, early decays will fool the detector.
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FIG. 6: A) A typical trajectory for the estimated initial
condition, z̃(τf), given a record Ψ which is randomly generated
for an excited state initial condition (blue dashed line) and a
ground state initial condition (red solid line). B) A histogram
of z̃(τf → ∞) for 104 trajectories for both an excited state
initial condition (dark blue bars column 1) and a ground state
initial condition (light red bars column 2). The SNR after
τf = 1 is 10 and time is measured in units of T1.

VII. COMPARISON WITH LATCHING

MEASUREMENT

The challenges from qubit relaxation to attaining
high fidelity in a continuous measurement also exist in
other measurement schemes. For comparison, consider
a latching measurement where the qubit state triggers a
classical switching event in the measurement apparatus
[25, 26, 27, 28, 29]. Such a measurement has the ad-
vantage that the detector state stays latched for a very
long time, so that noise from subsequent amplification
stages is completely negligible and the SNR is effectively
infinite. We can roughly model this process as an instan-
taneous measurement with no errors but a finite arming
time tarm needed to set up the pre-latched state of the
detector. We assume that the arming stage occurs after
the qubit is prepared but before it is measured. The mea-
surement of a qubit in the excited state will be wrong if
the qubit relaxes before the measurement is made. The
probability that the qubit relaxes during tarm rises ex-
ponentially towards 1, so the fidelity falls exponentially,
F (τarm) = e−τarm . As shown in table I, τarm must be
slightly smaller than τopt. Although these times are dif-

ferent in that τarm is a maximum value whereas τopt is an
optimal value for a given SNR, they provide a valuable
comparison between the measurement schemes.

Of course, no latching measurement is truly instanta-
neous with perfect accuracy in translating the qubit state
into latching events. Moreover, a latching measurement
usually induces some mixing of states, so the actual fi-
delity may be lower than for an equivalent continuous
QND measurement. Both measurement schemes have
their own strengths and weaknesses, but in either case,
qubit decay can be a significant limiting factor on the
fidelity.

VIII. CONCLUSION

We have examined the effect of qubit relaxation on
a continuous quantum non-demolition measurement for
four different measurement protocols in which the signals
are integrated with a box car linear filter, an exponen-
tially decaying filter, an optimal linear filter and a non-
linear Bayesian filter which by definition is the optimal
theoretical filter. We found that in all these protocols
there exists a theoretical limit on the measurement fi-
delity. The determining factor of this limit is the signal
to noise ratio of the measurement. Our results are sum-
marized in table I where we see that the non-linear filter
reaches the same fidelity as the linear filters even for sub-
stantially lower required signal to noise ratio. Lastly we
compare the continuous quantum non-demolition results
with latching measurements and found that there is a
quantitatively different but qualitatively similar limit on
the fidelity of latching measurements also due to relax-
ation. The signal to noise ratio required to do successful
qubit single shot quantum non-demolition measurements
should be attainable in the near future, and there is no
fundamental reason why significantly higher fidelity mea-
surements cannot be performed.
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APPENDIX A: NUMERICAL PROCEDURE

USED BY THE OPTIMAL NON-LINEAR FILTER

In this appendix we present the method used to sim-
ulate the optimal non-linear filter. This filter requires
simulating Eqs. (6.5) and (6.6) which contains a double
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integral over a stochastic process ψ(τ). This is not practi-
cal numerically and a much better method can be imple-
mented by deriving a set of coupled stochastic differential
equations. To do this we start by rewriting Eqs. (6.5) and
(6.6) as

P (i0 = 1|Ψ) =
P̄+1,ψ

P̄−1,ψ + P̄+1,ψ
(A1)

P (i0 = −1|Ψ) =
P̄−1,ψ

P̄−1,ψ + P̄+1,ψ
(A2)

where

P̄+1,ψ = e−τf exp[s(τf , 0)SNR] +

∫ τf

0

dτd e
−τd exp{[s(τd, 0) − s(τf , τd)]SNR} (A3)

P̄−1,ψ = exp[−s(τf , 0)SNR] (A4)

and the signal s(τ, τ ′) is defined in Eq. (6.7). We first differentiate P̄+1,ψ with respect to τf and by defining

λ+1,ψ = e−τf exp[s(τf , 0)SNR] −
∫ τf

0

dτd e
−τd exp{[s(τd, 0) − s(τf , τd)]SNR} (A5)

we get the following set of coupled stochastic differential
equations

d

dτf
P̄+1,ψ = SNR ψ(τ)λ+1,ψ (A6)

d

dτf
λ+1,ψ = SNR ψ(τ)P̄+1,ψ − (λ+1,ψ + P̄+1,ψ) (A7)

and the initial conditions λ+1,ψ = 1 and P̄+1,ψ = 1. If we
use Eq. (A4) the two additional coupled equations are

d

dτf
P̄−1,ψ = SNR ψ(τ)λ−1,ψ (A8)

d

dτf
λ−1,ψ = SNR ψ(τ)P̄−1,ψ (A9)

with initial conditions λ−1,ψ = −1 and P̄−1,ψ = 1.
Note since there is no relaxation, we don’t need to have
two equations for the ground state, we can just use
dτf P̄−1,ψ = −SNR ψ(τ)P̄−1,ψ , but to keep the problem
symmetrical we have decided to leave both equations in.
This makes it easier to extend the theory to cases where
upward jumps are possible.

Thus to simulate Eqs. (6.5) and (6.6) we simply solve
the above two sets of two coupled differential equations
and then combine them using Eqs. (A1) and (A2). Note
an equivalent derivation of these equations can be made
by using the Kushner-Stratonovich equation [35] and
then simply using Bayes theorem to invert these equa-
tions for estimating unknown parameters [36].
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