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Sideband transitions are spectroscopically probed in a system consisting of a Cooper pair box
strongly but non-resonantly coupled to a superconducting transmission line resonator. When the
Cooper pair box is operated at the optimal charge bias point the symmetry of the hamiltonian re-
quires a two photon process to access sidebands. The observed large dispersive ac-Stark shifts in the
sideband transitions induced by the strong non-resonant drives agree well with our theoretical pre-
dictions. Sideband transitions are important in realizing qubit-photon and qubit-qubit entanglement
in the circuit quantum electrodynamics architecture for quantum information processing.

A promising route towards the implementation of a
scalable solid state quantum information processor [1] is
based on superconducting quantum electronic circuits.
The basic concepts of creating coherent quantum two-
level systems (qubits) from superconducting circuit ele-
ments such as inductors, capacitors and Josephson junc-
tions (an ideal, non-linear inductor) are well understood
[2] and a variety of qubits have been implemented in a
wide range of architectures [3]. The realization of con-
trolled qubit interactions [4, 5, 6, 7, 8] and the implemen-
tation and characterization of two-qubit gate operations
[9, 10] is a main objective of current research. Many
implementations are, however, limited to static near-
est neighbor couplings. By coupling individual qubits
to a common harmonic oscillator mode used as a bus
[11, 12, 13] non-local interactions can be mediated be-
tween very distant qubits, a much more versatile and
scalable approach for quantum information processing.

A promising realization of such a system is based on
a set of Cooper pair boxes strongly coupled to a high
quality transmission line resonator [12]. In this circuit
quantum electrodynamics (QED) architecture [12], it has
been demonstrated spectroscopically that a single photon
can be exchanged coherently between a superconducting
cavity and an individual qubit [14] in a resonant process
known as the vacuum Rabi mode splitting. This resonant
process has also been observed as time-resolved oscilla-
tions in a persistent current qubit coupled to a lumped
element oscillator [7, 16]. This feat is essential for non-
local qubit coupling and for quantum communication as
it allows to transfer quantum information from station-
ary qubits to photons used as ‘flying’ qubits that may
enable hybrid quantum information systems [17].

In the circuit QED architecture high fidelity qubit con-
trol has been demonstrated and the strong non-resonant

(or dispersive) coupling of individual qubits to cavity
photons has been successfully employed for high visibil-
ity readout of the qubit state [18, 19]. In the dispersive
regime, when the transition frequency ωa between the
qubit ground state |g〉 and excited state |e〉 is detuned

by an amount ∆ = ωa − ωr from the cavity frequency
ωr, the resonant qubit-photon interaction is suppressed.
Nevertheless, sideband transitions, see Fig. 1a, may be
used to transfer a qubit state to a photon state, also see
Ref. [15]. Sideband transitions are induced by driving the
coupled qubit-cavity system at its sum ωblue = ωa + ωr

(blue sideband) or difference frequencies ωred = ωa − ωr

(red sideband). Similarly sidebands have been accessed
in a system in which a qubit is coupled to a SQUID os-
cillator also used for readout [7]. Using such sideband
transitions, entanglement between a qubit and the res-
onator could potentially be generated, a process essential
for realizing non-local gate operations in a set of qubits

FIG. 1: (color online) (a) Dispersive dressed states energy
level diagram for qubit states |g〉 and |e〉 with separation ωa

and single mode cavity photon states |n = 0, 1, 2...〉 with sep-
aration ωr. Red (ωred) and blue (ωblue) side band transitions
are indicated. (b) Two-tone scheme for sideband transitions.
Fixed ac-tone ωac detuned by δ from cavity combined with
spectroscopy tone ωs = ωa ± δ induces sideband transitions.
(c) Measurement setup for two-tone spectroscopy, compare
with setups in Refs. [14, 19]. An extra phase coherent mi-
crowave source at the ac-tone is applied to the cavity input.
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coupled to a cavity.
In this letter, we demonstrate an approach to access

the red and blue sideband transitions of a Cooper pair
box biased at its optimal point and coupled to a cavity
using two microwave tones at different frequencies. We
spectroscopically probe the sideband transitions and ex-
plain the observed transition frequencies induced by two
independent non-resonant drives.

We consider a Cooper pair box [20] with Josephson
energy EJ,max = 12 GHz and single electron charging en-
ergy Ec = 4.75 GHz biased at its optimal point [21] as an
ideal two-level system with a ground state |g〉, an excited
state |e〉 and bare transition frequency ωa = 5.8 GHz.
The Cooper pair box is coupled with strength g/2π =
17 MHz to a harmonic oscillator with states |0〉, |1〉, ...|n〉
realized as a single mode of a transmission line resonator
[22] with frequency ωr/2π = 5.5 GHz and decay rate
κ/2π = 0.5 MHz. The strong coupling limit of cavity
QED is realized in this system [14] and its dynamics are
described by the Jaynes-Cummings hamiltonian [12]. Us-
ing applied magnetic flux, the split Cooper pair box is de-
tuned from the cavity by ∆ = ωa−ωr ≈ 2π 350 MHz ≫ g.

The qubit transition frequency ωa/2π = 5.877 GHz is
found by applying a spectroscopy microwave tone at fre-
quency ωs to the cavity and measuring the phase shift
of a microwave beam applied to the system at the cav-
ity frequency ωr, as demonstrated in Ref. 18. Using this
single frequency scheme however, the red and blue side-
bands cannot be observed because the single photon tran-
sitions are to first order forbidden when the Cooper pair
box is biased at charge degeneracy. This can be seen

by introducing the parity operator P = e−iπa
†
aσz and

recognizing that states involved in the sideband transi-
tions are of equal parity while the term in the Hamil-
tonian responsible to drive these transitions is of odd
parity [13, 15, 23]. Away from charge degeneracy, the
sideband transitions are allowed, but at the expense of

FIG. 2: (color online) (a) Calculated lorentzian cavity trans-
mission spectrum over large frequency range. The cavity
drives at frequencies νs ≈ νa, νrf ≈ νr and νac and the cavity
transmission at these frequencies are indicated. (b) Measured
cavity spectrum (dots) and fit (line) around cavity frequency.

reduced coherence times due to the larger sensitivity of
the qubit to charge noise [24].

Going to second order in the drive Hamiltonian, the
above considerations mean that two-photon sideband
transitions are allowed at charge degeneracy. One way
to drive these two-photon transitions is simply to choose
the drive frequency to be ωred,blue/2. The red sideband,
however, is strongly detuned from the resonator and it is
difficult to drive the transition at the required rate be-
cause of the filtering due to the cavity at large detunings,
also see Fig. 2.

As a result, here, we choose to drive sideband tran-
sitions at charge degeneracy with two photons of fre-
quencies ωac and ωs that can be selected freely with the
constraint that their sum or difference must match the
desired sideband ωred,blue = ωac ± ωs. In particular, an
off-resonant ac-Stark drive at fixed frequency ωac = ωr−δ
is chosen at a small detuning δ from the cavity frequency,
see Fig. 1b. The power coupled into the cavity for a fixed
external drives scales as 1/δ2 and thus is largest for small
values of δ. A second microwave drive applied at fre-
quency ωs ≈ ωa ± δ then induces two-photon blue or red
sideband transitions, respectively, as shown in Fig. 1b.
The effective Hamiltonians describing these processes are
given by [13]

H2R ≈
g

4

(

Ωac

ωa − ωac

) (

Ωs

ωa − ωs

)

(

a†σ− + aσ+

)

,

H2B ≈
g

4

(

Ωac

ωa − ωac

) (

Ωs

ωa − ωs

)

(

a†σ+ + aσ−

)

,

(1)

where Ωac,s are Rabi frequencies given by

Ωac,s =
2gǫac,s

ωr − ωac,s
, (2)

with the drive amplitudes ǫac,s expressed as frequencies,
also see Eq. (5).

FIG. 3: (color online) (a) Density plot of measured cavity
phase shift φ (white : 70 deg, black : 0 deg) vs. ωs and ωac.
(b) Measured φ vs. ωs for δ/2π = 50 MHz (dots) as indi-
cated by arrows in (a) and fit to linear combination of three
independent Lorentzian line shapes (solid line).
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Figure 3b shows the cavity phase shift φ in the pres-
ence of a fixed power and fixed frequency ac-Stark tone
chosen at a detuning of δ/2π = 35 MHz in response to a
spectroscopic drive scanned around the qubit transition
frequency. The main qubit transition at ωa and the two
sidebands at ωa ± δ are clearly observed. We also note
that the sideband transitions can be saturated at suitably
chosen drive powers indicating that sideband oscillations
should be observable in future experiments. In Fig. 3a,
the side band transitions are shown varying the detuning
δ but keeping the drive amplitudes fixed. In this pa-
rameter range, the sideband frequenies scale as expected
to first order linearly with the detuning δ and the ampli-
tudes of the peaks decrease with detuning as the effective
photon number in the cavity decreases with δ due to the
cavity filtering.

At higher drive amplitudes, however, large shifts of
the sideband frequencies from ωa ± δ become apparent.
In Fig. 4a, the center and sideband transition frequen-
cies are indicated as extracted from the peak positions
of Lorentzian line fits, similar to those in Fig. 3b, for an
ac-Stark tone power increased by a factor of 4 in compar-
ison to the measurement presented in Fig. 3. This data
shows that all transitions are shifted to higher frequen-

FIG. 4: (color online) (a) Two-tone red and blue sidebands
(red/blue dots) and fundamental (black dots) qubit transition
frequencies for fixed Ps and Pac varying ωac. Lines are fits to
Eqs. (3-4) (b) For fixed ωac, and varying Pac. Measurements
are done at fixed measurement frequency ωrf = ωr and power
Prf weakly populating the resonator with nrf ≈ 2 photons.

cies as the detuning δ decreases, an effect that can be
explained considering the ac-Stark shifts [18] induced in
the qubit transition frequency by the off resonant drives.
As both drives at ωac and ωs are detuned from the qubit
transition by δ and ∆+ δ they induce dispersive shifts in
the qubit frequency

ω̃a = ωa +
1

2

Ω2
ac

ωa − ωac
+

1

2

Ω2
s

ωa − ωs
, (3)

that depend on the drive strengths ǫac,s and frequencies
ωac,s. The shift due to the additional drive used to mea-
sure the qubit population is taken into account in the
same way [18]. These off-resonance ac-Stark shifts are
important at large drive amplitudes, i.e. when the qubit
transition is saturated, and small detunings. It is impor-
tant to note that any frequency multiplexed scheme used
to address multiple qubits is affected by such shifts. How-
ever, the effect can be compensated for by appropriately
readjusting the qubit drive frequencies.

At a fixed ac-Stark tone, the blue and red sideband
frequencies are then determined by the nonlinear equa-
tion

ωs = ω̃a ± δ (4)

for ωs that allows one to accurately fit the center frequen-
cies of both the fundamental and the sidebands with the
same set of parameters, see Fig. 4.

The drive amplitudes required for the fits using Eq. (2)
were calibrated using the ac-Stark shift of the qubit tran-
sition induced by the measurement beam resonant with
the cavity frequency ωr. At this frequency an input power

of P
(1)
rf = −28 dBm corresponds to an average cavity pho-

ton occupation number of n = 1. The photon number n
is related to the drive amplitude ǫ

n =
ǫ2

∆2 + (κ/2)2
, (5)

depending on the detuning from the cavity ∆ and the
cavity decay rate κ. Having accurately measured κ (see
Fig. 2b) and knowing ∆, the values for ǫ are accurately
and consistently determined for all fits.

For the sideband measurements presented in Fig. 4b,
we have chosen a fixed detuning of δ/2π = 50 MHz and
have varied the ac-Stark tone power over two orders of
magnitude and kept the dispersive shifts due to the spec-
troscopy drive minimal by keeping the drive amplitude
low. As observed, the dispersive shifts in the qubit fre-
quency with drive power can be much larger than the
qubit line widths and are well described by Eqs. (3-4),
see lines in Fig. 4. As the frequencies of the two tones
are smaller than both the cavity and the qubit frequency
all lines are shifted to higher frequencies, see Eq. (3).

In the case that the spectroscopy drive amplitude dom-
inates the dispersive shifts, the red sideband is shifted to
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FIG. 5: (color online) (a) As Fig. 4b but for fixed ωac, Pac and
varying Ps. (b) Master equation simulation of the qubit inver-
sion 〈σz〉 as a function of spectroscopy frequency ωs/2π and
the spectroscopy power log(ǫs/2π)2 on a logarithmic scale.
Blue: 〈σz〉 = −1; Red: 〈σz〉 = 0. The white lines are ob-
tained from Eqs. (3) and (4). The parameter values used in
the simulation are those quoted in the text.

higher frequencies, whereas the blue sideband is shifted to
lower frequencies, since the detuning of the spectroscopy
drive from the bare qubit transition frequency has differ-
ent signs. This situation is analyzed in Fig. 5, where the
spectroscopy power is varied by 3 orders of magnitude
at fixed detuning of δ = 50 MHz. Again the sideband
transition frequencies are predicted well by our analysis.
As shown in Fig. 5b, these results also agree well with
numerical simulation of the system’s master equation in
the Born-Markov approximation [13].

We have demonstrated that sideband transitions can
be driven in a Cooper pair box coupled to a transmis-
sion line resonator and biased at the optimal point using
two photons of different frequencies. Large shifts in the
qubit level separation are observed and can be explained
and predicted considering the ac-Stark shifts induced by
the non-resonant drives. These are particularly impor-
tant at high drive amplitudes that are required for short
pulses that can be potentially used to entangle a qubit
with a cavity photon and to generate qubit-qubit entan-
glement. A protocol for entangling qubits could follow
these lines. We would start out with both the cavity
and a detuned qubit in their ground state |0, g〉 and ap-
ply a π pulse to the qubit to generate the state |0, e〉.
With a π/2 red sideband pulse on the coupled system we
would generate a maximally entangled cavity-qubit state

of the form |0, e〉 + |1, g〉. This entaglement would then
be transferred to generate a qubit-qubit entangled state.
Applying a π pulse on the red sideband of a second qubit
would prepare a final state of the form |0〉⊗(|e, g〉+|g, e〉),
which is a Bell state of two superconducting qubits and
leaves the cavity in its ground state and completely un-
entangled from the qubits. This scheme would be an
off-resonant implementation of the generation of entan-
gled qubit pairs inspired by the protocol demonstrated
for Rydberg atoms [25] and trapped ions [26]. We also
note that single microwave photon sources could be real-
ized and cavity Fock states could be prepared in circuit
QED using this sideband scheme.
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