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Abstract. Superconducting circuits have been successfully established as systems to prepare
and investigate microwave light fields at the quantum level. In contrast to optical experiments
where light is detected using photon counters, microwaves are usually measured with well
developed linear amplifiers. This makes measurements of correlation functions - one of the
important tools in optics - harder to achieve because they traditionally rely on photon counters
and beam splitters. Here, we demonstrate a system where we can prepare on demand single
microwave photons in a cavity and detect them at the two outputs of the cavity using
linear amplifiers. Together with efficient data processing, this allows us to measure different
observables of the cavity photons, including the first-order correlation function. Using these
techniques we demonstrate cooling of a thermal background field in the cavity.

Correlation function measurements are one of the most important tools in quantum optics
to investigate the properties of radiation [1]. In such measurements one observes the ability of
light to interfere with itself as quantified by first and second-order correlation functions [2, 3].
The radiation to be characterized is usually passed through a beam splitter and subsequently its
interference is observed in Mach-Zehnder interferometer or Hanbury Brown Twiss type setups [4].
At optical frequencies the light is commonly detected using readily available photon counters.
In the microwave regime, however, no efficient photon counters exist to date, as photons at
these much lower frequencies carry an energy that is orders of magnitude less than at optical
frequencies. Instead, most experiments rely on a detection of electric field quadratures using
linear amplifiers and oscilloscopes. Although linear microwave amplifiers can be used to reliably
detect fields on the single photon level using averaging techniques [5] they necessarily add noise
to the signal [6]. Despite the lack of photon detectors, it was shown recently [7] that correlation
functions are also accessible in electric field quadratures detection schemes.

In the microwave regime beam splitters are typically implemented as so called hybrids [8].
Similar to the optical case, these are devices that rely on the interference of light propagating
along different paths. Therefore, their size is determined by the radiation wavelength which is
on the order of 1 cm at microwave frequencies. This makes an on-chip beam splitter a sizable
device, which is not yet commonly used in quantum microwave experimental setups. While first
realizations in superconducting microwave electronics are being demonstrated [9–12] they still
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Figure 1. Experimental setup. a, Microscope image of our sample with superconducting
microwave transmission line resonator and transmon qubit in the resonator gap (see inset). Two
output lines are coupled symmetrically on the left and right. b, Schematic of the experimental
setup. A two level system emits a photon into the cavity mode a defined by two mirrors. Linear
amplifiers with gain Gb,c couple symmetrically to the cavity outputs amplifying the radiation in
output modes b and c. Heterodyne detectors (HD) extract both quadratures of the output fields
and feed results to field programmable gate array (FPGA) based digital correlation electronics.

require additional effort in the fabrication process.
Here, we present measurements of the first-order correlation function of single microwave

photons. We explore an architecture which features two channel detection without employing
a beam splitter by using the two outputs of a symmetric microwave cavity. Furthermore we
demonstrate that by recording the time series of the detected quadrature signal – instead of
its time average – and using efficient digital signal processing, we can extract the first-order
correlation function of radiation generated by microwave frequency emitters. Interestingly
they allow us to observe the cooling of a thermal background field in the resonator through
the interaction with the qubit. The measurements presented here were performed before
samples with integrated beam splitters were available to us. Nevertheless, they demonstrate the
feasibility of our detection technique. Based on these results we have performed measurements
of the second-order correlation function in an optimized setup which allows for the observation
of strictly quantum mechanical effects such as single photon antibunching [12].

For our experiments we have realized a superconducting electronic circuit (Fig. 1a), similar
to the one presented in [5]. In our circuit, we coherently and controllably couple a single qubit
to a high quality resonator to create an individual photon on demand. The superconducting
transmon qubit [13] used in this experiment is characterized by its maximum Josephson energy
EJ,max ≈ 14.4 GHz, its charging energy EC ≈ 500 MHz and its energy relaxation and dephasing
times in excess of a few hundred nanoseconds. The transition frequency of the qubit is flux
tunable using both a quasi-static magnetic field generated with a miniature coil and an on chip
transmission line to generate nanosecond time scale flux pulses. By integrating our qubit into a
superconducting coplanar transmission line resonator of frequency νr = 6.433 GHz and quality
factor Q = 2060 we couple it strongly to a single mode a of the radiation field stored in the
resonator. This approach is known as circuit quantum electrodynamics [14] and allows to study
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Figure 2. Control of qubit state and
qubit/resonator interaction. a, Qubit excited
state population Pe versus Rabi pulse amplitude
Ar. The Rabi rotation angle θr is indicated on
the top axis. The used pulse shape is shown in
the inset. b, Pe versus qubit-resonator interaction
time tvr with the used flux pulse shape in inset.
Note that the interaction time can experimentally
not be made shorter than 1.9 ns due to finite rise
time of the pulses. Dots are data, lines fits to
an analytic model of an exponentially decaying
sinusoid.

in exquisite detail the interaction of quantum two-level systems with quantized radiation fields.
In this system we implement a single photon source using the following procedure. Applying

a phase controlled truncated Gaussian microwave pulse of variable amplitude Ar and total
duration tr = 18 ns to the qubit biased at a transition frequency of νq = 6.933 GHz, we prepare
a superposition state |ψq〉 = α|g〉 + β|e〉 between the qubit ground |g〉 and excited states |e〉.
The superposition is characterized by the two complex probability amplitudes α = cos(θr/2)
and β = sin(θr/2)eiφ which are parameterized by the polar (Rabi) angle θr and the phase angle
φ. The phase angle φ is expressed relative to the phase of the local oscillator used in the
heterodyne detection scheme and therefore can always be chosen to be zero. We characterize
the prepared qubit state using a pulsed dispersive measurement of the resonator transmission
[15] and clearly observe Rabi oscillations in the qubit population Pe = |β|2 versus the amplitude
Ar ∝ θr (Fig. 2a). After qubit state preparation, we apply a current pulse of controlled amplitude
and duration to the flux bias line to tune the qubit transition frequency into resonance with the
resonator frequency νr. We time-resolve the resonant vacuum Rabi oscillations of the coupled
system at a frequency of 2g/(2π) = 118 MHz by dispersively measuring the qubit state after
it has been tuned back to the frequency νq strongly detuned from the resonator (Fig. 2b).
Adjusting the qubit-resonator interaction time to half a vacuum Rabi period tvr = π/g = 4.2 ns,
we coherently map the qubit state |ψq〉 to an equivalent superposition state |ψc〉 = α|0〉+ β|1〉
of the |0〉 and |1〉 photon Fock states stored in the resonator mode a, while the qubit returns
to the ground state. Similar techniques have been used to prepare and measure a wide range
of intra-cavity photon superposition states in recent experiments both with superconducting
circuits [16] and with Rydberg atoms [17]. It is important to note that this technique relies on
a reliable preparation of the vacuum state in the resonator prior to the controlled vacuum Rabi
oscillations. The choice of the interaction time tvr is based on the assumption that the coupled
system carries maximally one excitation for which the vacuum Rabi frequency is 2g/(2π). If the
resonator is in a weak thermal state the final state will not be |ψc〉 but generally an entangled
state between qubit and resonator as discussed at the end of this report.

In the following we discuss the characterization of the photon states in the cavity by measuring
the quadrature amplitudes of the microwave fields emitted from both ends of the cavity, see
schematic in Fig. 1b. For this purpose we have realized a symmetric circuit QED setup in
which the output fields are detected independently and simultaneously at both ports of the



cavity. Our scheme comprises two independent detection chains similar to the one pioneered
by Gabelli et al. [9]. Each chain consists of a cold amplifier with gain Gb,c ≈ 33 dB and noise
temperature TN(b,c) ≈ 4.5 K followed by a two stage heterodyne detector in which the signal
is down converted from the resonator frequency to 25 MHz in an analog stage and to d.c. in a
digital homodyne stage. This allows for the measurement of the electric field at both ends of
the resonator characterizing the radiation emitted into the modes labeled b and c. In this way,
we extract the complex envelope [18] Sb,c(t) of the amplified electric field E

(+)
b,c described by

E
(+)
b,c (t) +Nb,c(t) = Sb,c(t)e−2πiνrt (1)

where the real and imaginary part of Sb,c(t) are the two field quadratures in the frame rotating
at the resonator frequency and Nb,c(t) is the noise added by the amplifier. Using input-output
theory [19], one can show that the full information about the intra-cavity mode a can be extracted
from a measurement of the propagating modes b and c [20]. It is interesting to note that our
setup is essentially equivalent to one in which the radiation emitted by a source is investigated at
the two output ports of a beam splitter [20]. Considering the expressions for all field operators
in the Heisenberg picture we find a formal equivalence, where the resonator mode a is equivalent
to the beam splitter input mode. Furthermore, the modes b and c are equivalent to the beam
splitter output modes and the cavity input modes are equivalent to the vacuum port of the
beam splitter. This allows us to realize a Mach-Zehnder interferometer or a Hanbury Brown
Twiss type setup to investigate the radiation in the mode a without explicitly implementing a
microwave beam splitter.

As a first step, we characterize zero and one photon superposition states by measuring the
time dependence of the average quadrature amplitudes of the electric field of the output mode
b at one end of the resonator. This gives us access to the expectation value of the annihilation
operator of the cavity field 〈Sb(t)〉 ∝ 〈a(t)〉 [20]. Similar measurements were presented in Ref. [5],
where the cavity photon was created by Purcell limited spontaneous emission. Figure 3a shows
the real part of 〈Sb(t)〉 versus time t after the preparation of the photon superposition state |ψc〉
characterized by the qubit Rabi angle θr used for its preparation. We find excellent agreement
with the expected average field quadrature amplitude 〈a〉 ∝ sin (θr)/2 (Fig. 3c), where we get
the largest signals for the superposition states |ψ+

c 〉 = (|0〉+ |1〉)/
√

2 and |ψ−c 〉 = (|0〉 − |1〉)/
√

2
prepared using θr = π/2 and 3π/2, respectively. As expected from the uncertainty principle, the
Fock states |0〉 and |1〉 prepared with θr = 0 and π, respectively, do not show any quadrature
amplitude signals (Fig. 3a) since their phase is completely uncertain. For all of the above
measurements, the overall global phase of the signals is adjusted such that the imaginary part
of 〈Sb(t)〉 is equal to zero which therefore is not displayed. We also note that the amplifier noise
averages to zero in the quadrature amplitude measurement. Moreover, the time dependence
of all measurement traces is well understood. For the state |ψ+

c 〉 (Fig. 3b), for example, the
characteristic decay time is given by twice the cavity decay time 2Tκ = Q/πνr = 102 ns. The
rise time, which should ideally be tvr = 4.2 ns, is limited by the bandwidth BW = 15 MHz of
our detection scheme.

In our measurement scheme, we simultaneously record the time dependent quadrature
amplitudes Sb,c(t) detected at both ports of the cavity for each single photon that we generate.
This is realized using a two channel analog-to-digital converter (ADC) with a time resolution of
10 ns. Based on the measurement record of each event, we can then calculate any expectation
value, such as averages, products or correlations, that can be expressed in terms of the detected
output signals Sb,c(t). Processing this data in real time using field programmable gate array
(FPGA) electronics allows us to efficiently extract information even in the presence of substantial
noise added by the amplifier.

As a first experiment taking advantage of this scheme, we have measured the expectation
value of the instantaneous power 〈S∗b (t)Sb(t)〉 emitted into the output mode b with the cavity
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Figure 3. Quadrature ampli-
tude and cross-power measure-
ments. a, Measured time depen-
dence of cavity field quadrature am-
plitude of mode b for zero and one
photon superposition states charac-
terized by the Rabi angle θr (left
axis) and generated state (right
axis). b, Single quadrature trace
at θr = π/2 in a corresponding to
(|0〉 + |1〉)/

√
2. c, Dependence of

maximum quadrature amplitude on
θr. d, Measured time dependence
of cross-power between modes b and
c for the same preparation as in a.
e, Single power trace at θr = π in
c corresponding to |1〉. f, Depen-
dence of maximum cross-power on
θr. Blue dots are data, red line is
theory, see text.

mode a prepared in the Fock state |1〉 (not shown). It is important to note that we have digitally
calculated the power by multiplying the quadrature amplitudes Sb(t) for each single photon pulse
instead of using a diode as a power meter in which the detection and the averaging is realized
within the detector [5]. In this power measurement, the detected noise power of the amplifier
dominates by a factor of about 1600 over the single photon power which is still observed using
sufficient averaging (similar as in Fig. 3e). By identifying the measured single photon pulse
with the energy hνr we can compare the measured average power P̄ to the power of the noise
background P̄ (Nb) to determine the system noise temperature as

TN(sys) ≈
hνr

kB
· ηfilter

BWtp
· 1

2
P̄ (Nb)

P̄ − P̄ (Nb)
≈ 25 K, (2)

with Planck constant h, Boltzmann constant kB, and the time between photon preparations
tp = 512 ns. Finally we account for the fact that the finite bandwidth of the detection chain
filters out a part of the single photon pulse by introducing the efficiency ηfilter = 0.78 given by
the overlap of the photon spectrum and the detection bandwidth. The factor 1/2 reflects the
fact that we only detect half of all emitted photons on one side of the cavity. We find that TN(sys)

is substantially higher than the noise temperature of the amplifiers because of absorption in the
cables and insertion loss of components in the detection chain.

Calculating the cross-power 〈S∗b (t)Sc(t)〉 between the two output modes instead of the direct
power emitted into just a single output mode, we can reject most of the noise added by the
amplifiers, demonstrating the versatility of our digital scheme. The detected cross-power is
related to the average photon number in the cavity as [20]

〈S∗b (t)Sc(t)〉 ∝ 〈a†(t)a(t)〉+ P (Nbc), (3)

where P (Nbc) is the power of correlated noise between channels b and c. In these measurements,
the detected noise cross-power is significantly smaller than the direct noise power of each



amplifier as the two detection chains add predominantly uncorrelated noise. The equivalent
temperature of the residual correlations is found to be 520 mK in these particular measurements,
which can only be partly explained by the physical temperature of the sample. Therefore we
conclude that a substantial part of these residual correlations are of technical origin, such
as insufficient isolation of the two amplifier chains, correlated digitizer noise and residual
resonator thermal noise due to incomplete thermalization of the resonator inputs. In more recent
measurements where we use a similar two channel detection setup with improved thermalization
and better insolation we find correlated noise with an equivalent temperature of about 80 mK
which corresponds to a correlated noise power much smaller than the output power of the single
photon source.

We have characterized the measured cross-power of our single photon source for the same set
of cavity superposition states as used for the quadrature amplitude measurements (Fig. 3d). We
find excellent agreement of the temporal evolution of the cavity photon number in dependence
on the preparation angle of the photon state 〈a†a〉 ∝ sin2(θr/2) (Fig. 3f). The maximum cross-
power is measured for the Fock state |1〉 (θr = π) and the minimum power for the |0〉 state
(θr = 0 or 2π) (Fig. 3d).

Finally, we have characterized our single photon source using time-dependent first-order cross-
correlation measurements of the two output modes of the resonator

Γ(1)(τ) =
∫
〈S∗b (t)Sc(t+ τ)〉dt . (4)

For this purpose, we generate a train of 40 single photon pulses, each created using the procedure
described above, with a pulse separation of tp = 512 ns which is much greater than the qubit
and cavity decay times. To remove the background of the correlated noise, we subtract the
measured correlation function Γ(1)

ss (τ) in the resonator steady-state from the signal acquired
when performing the photon state preparation sequence Γ(1)(τ). From the recorded quadrature
amplitude data, we calculate in real-time

Γ(1)(τ)− Γ(1)
ss (τ) ∝ G(1)(τ) , (5)

which gives us access to the first-order correlation function G(1)(τ) =
∫
〈a†(t)a(t + τ)〉dt of the

resonator field [20]. To measure each trace in Fig. 4a, 128×106 trains of 40 photons were prepared
in a specific state and G(1)(τ) was calculated in real time using our FPGA based electronics,
corresponding to more than 1 terabyte of data that have been evaluated in approximately 1
hour.

The correlation function data G(1)(τ) (Fig. 4a) is characterized by a set of peaks that are
separated by the repetition time tp of the single photon source. The amplitude of G(1) at
τ = 0 and τ = ntp, representing the correlation between a pulse i and i + n, depends in a
characteristic fashion on θr. For the Fock state |1〉 (at θr = π), the correlation function G(1)(0)
is at a maximum and vanishes at G(1)(ntp) as there is no coherence between photons emitted
from the source at different times. In fact, G(1)(0) ∝ 〈a†a〉 ∝ |β|2 = sin(θr/2)2 oscillates
sinusoidally with the preparation angle, as it essentially measures the average photon number
of the generated field (Fig. 4b). For photon superposition states, the expectation values of 〈a†〉
and 〈a〉 of subsequently generated photon states have non-vanishing values, as discussed before.
Since photons from different repetitions of the experiments are uncorrelated, G(1)(ntp) ∝ 〈a†〉〈a〉
which has a finite value and oscillates at half the period. Thus, G(1)(ntp) ∝ |αβ|2 = sin2(θr)/4
is maximized for the states |ψ+

c 〉 and |ψ−c 〉 (Fig. 4b).
The observed features of the first-order correlation function together with the results

presented in Fig. 3 confirm that we have implemented a deterministic single photon source.
Considering the well controlled procedure implemented for generating the single photon pulses,
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Figure 4. Correlation
function measurements. a,
Time dependence of first-order
correlation function of the cav-
ity field G(1) for indicated
states. Data is offset for im-
proved visibility. b, Correla-
tion function at τ = 0 and
τ = ntp versus θr. Dots are
data, lines are predictions. c,
Enlarged trace for θr = 0 from
a displaying cavity field cool-
ing.

any other pulsed coherent or thermal field can essentially be ruled out as being the source
of the measured correlations. This indicates for our scheme that the quantum mechanical
properties of the radiation are not lost in the detection chain but are fully retained in the form
of statistical information of the data and can be extracted by appropriate single-shot analysis.
Measurements of the second-order correlation function G(2) provide unambiguous proof of the
quantum character of the field, independent of any prior knowledge about its source [1, 12].

Interestingly, our time-dependent first-order correlation function measurements allow us to
observe cooling of the resonator field through its interaction with the qubit in its ground state.
If the thermal occupation of the qubit excited state is substantially smaller than the thermal
occupation of the resonator, the qubit can absorb a photon from the resonator during the
interaction time tvr. The qubit then emits the photon into the environment at a different
frequency thereby cooling the resonator field. If we take the theoretical values for G(1) and
correct them to first order for a small thermal state in the resonator with mean photon number
nbg � 1 during the state preparation, we find for the first-order correlation measurements with
background subtraction

G(1)(ntp) ∝ (sin2(θr)/4)(1− nbg(1 + cos
√

2π))2 (6)

G(1)(0) ∝ sin(θr/2)2(1 + nbg sin2
√

2π)− nbg. (7)

where the factors
√

2 indicate the faster vacuum Rabi oscillation of two excitations in the system.
When we try to prepare the vacuum state in the cavity (θr = 0), the value of G(1)(0) = −nbg is a
direct measure of the background field photon number which is cooled by the qubit interaction.
In our measurement in Fig. 4c this is observable as a pronounced dip in the measured G(1)(τ)
around τ = 0, which allows us to extract the thermal background population of the resonator
nbg = 0.07 corresponding to a field temperature of Tbg = 115 mK. This temperature is in
good agreement with independent measurements of Tbg from the vacuum Rabi mode splitting
spectrum [21]. Analyzing the time dependent correlation function measurements in the presence



of a weak thermal background field, we find excellent agreement between our data and Eq. (6)
for all prepared field states (see solid lines in Fig. 4).

Our experiments clearly demonstrate that correlation function measurements based on
quadrature amplitude measurements can be used to characterize quantum properties of
propagating microwave frequency radiation fields. Even in the presence of noise added by
the amplifier, efficient data processing techniques and two channel detection allow for the
measurements of higher statistical moments of the fields. We have also demonstrated that
the cavity field can equivalently be characterized measuring both cavity outputs using a two
channel detection method instead of using a beam splitter. When better, possibly quantum
limited, amplifiers [22] become available the demonstrated techniques may also help to enable
the full tomography of propagating radiation fields. Furthermore, the flexibility of circuit design
and the high level of control achievable in circuit QED will enable a variety of future experiments
with quantum microwave fields for basic research and applications.
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[21] Fink J M, Baur M, Bianchetti R, Filipp S, Göppl M, Leek P J, Steffen L, Blais A and Wallraff A 2009 Phys.

Scr. T137 014013
[22] Castellanos-Beltran M A, Irwin K D, Hilton G C, Vale L R and Lehnert K W 2008 Nat. Phys. 4 929–931


