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We present an ideal realization of the Tavis-Cummings model in the absence of atom number and
coupling fluctuations by embedding a discrete number of fully controllable superconducting qubits
at fixed positions into a transmission line resonator. Measuring the vacuum Rabi mode splitting
with one, two and three qubits strongly coupled to the cavity field, we explore both bright and dark
dressed collective multi-qubit states and observe the discrete

√
N scaling of the collective dipole

coupling strength. Our experiments demonstrate a novel approach to explore collective states, such
as the W -state, in a fully globally and locally controllable quantum system. Our scalable approach is
interesting for solid-state quantum information processing and for fundamental multi-atom quantum
optics experiments with fixed atom numbers.

PACS numbers: 42.50.Ct, 42.50.Pq, 03.67.Lx, 85.35.Gv

In the early 1950’s, Dicke realized that under certain
conditions a gas of radiating molecules shows the collec-
tive behavior of a single quantum system [1]. The ideal-
ized situation in which N two-level systems with identical
dipole coupling are resonantly interacting with a single
mode of the electromagnetic field was analyzed by Tavis
and Cummings [2]. This model predicts the collective
N -atom interaction strength to be GN = gj

√
N , where gj

is the dipole coupling strength of each individual atom j.
In fact, in first cavity QED experiments the normal mode
splitting, observable in the cavity transmission spectrum
[3, 4], was demonstrated with on average N̄ > 1 atoms in
optical [5, 6] and microwave [7] cavities to overcome the
relatively weak dipole coupling gj. The

√
N scaling has

been observed in the regime of a small mean number of
atoms N̄ with dilute atomic beams [7–9] and fountains
[10] crossing a high-finesse cavity. In these experiments,
spatial variations of the atom positions and Poissonian
fluctuations in the atom number inherent to an atomic
beam [4, 8, 11] are unavoidable. In a different limit where
the cavity was populated with a very large number of
ultra-cold 87Rb atoms [12] and more recently with Bose-
Einstein condensates [13, 14] the

√
N nonlinearity was

also demonstrated. However, the number of interacting
atoms is typically only known to about ∼ 10% [13].

Here we present an experiment in which the Tavis-
Cummings model is studied for a discrete set of fully con-
trollable artificial atoms at fixed positions and with vir-
tually identical couplings to a resonant cavity mode. The
investigated situation is sketched in Fig. 1 a, depicting an
optical analog where three two-state atoms are determin-
istically positioned at electric field antinodes of a cavity
mode where the coupling is maximum. In our circuit
QED [15, 16] realization of this configuration (Fig. 1 b),
three transmon-type [17] superconducting qubits are em-
bedded in a microwave resonator which contains a quan-
tized radiation field. The cavity is realized as a copla-
nar waveguide resonator with a first harmonic full wave-

length resonance frequency of ωr/2π = 6.729 GHz and a
photon decay rate of κ/2π = 6.8 MHz. The qubits are
positioned at the antinodes of the first harmonic stand-
ing wave electric field. The transition frequency between
ground |g〉 and first excited state |e〉 of qubit j, approxi-
mately given by ωj ≈

√
8ECjEJj(Φj)/h̄ − ECj/h̄, is con-

trollable through the flux dependent Josephson energy
EJj(Φj) = EJ maxj | cos (πΦj/Φ0)| [17]. Here ECj is the
single electron charging energy, EJ maxj the maximum
Josephson energy at flux Φj = 0 and Φ0 the magnetic
flux quantum. Independent flux control of each qubit is
achieved by applying magnetic fields with three external
miniature current biased coils (Fig. 2 a) where we take
into account all cross-couplings by inverting the full cou-
pling matrix. Optical images of the investigated sample
are depicted in Fig. 2 b and c. The resonator was fabri-

19 mm

FIG. 1: Schematic of the experimental set-up. (a) Opti-
cal analog. Three two-state atoms are identically coupled
to a cavity mode with photon decay rate κ, atomic energy
relaxation rate γ and collective coupling strength GN. (b)
Schematic of the investigated system. The coplanar waveg-
uide resonator is shown in light blue, the transmon qubits A,
B and C in violet and the first harmonic of the standing wave
electric field in red.
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cated employing optical lithography and Aluminum evap-
oration techniques on a Sapphire substrate. All qubits
were fabricated with electron beam lithography and stan-
dard Al/AlOx/Al shadow evaporation techniques. Table
I states the individual qubit parameters obtained from
spectroscopic measurements.

The physics of our system is described by the Tavis-
Cummings Hamiltonian [2]

ĤTC = h̄ωrâ
†â+

∑
j

(
h̄

2
ωjσ̂

z
j + h̄gj(â†σ̂−j + σ̂+

j â)
)

, (1)

µ

µ

µ

FIG. 2: Circuit diagram and false color optical images of the
sample. (a) Simplified electrical circuit diagram of the exper-
imental setup. The waveguide resonator operated at a tem-
perature of 20 mK, indicated as LC oscillator with frequency
ωr, is coupled to input and output leads with the capacitors
Cin and Cout. Qubits A, B and C are controlled with exter-
nal current biased coils (IA,B,C) and coupled to the resonator
via identical capacitors Cg. A transmission measurement is
performed by applying a measurement tone νrf to the input
port of the resonator, amplifying the transmitted signal and
digitizing it with an analog-to-digital converter (ADC) after
down-conversion with a local oscillator (LO) in a heterodyne
detection scheme. (b) The coplanar microwave resonator is
shown truncated in gray (substrate in dark green) and the lo-
cations of qubits A, B and C are indicated. (c) Top, magnified
view of transmon qubit B (violet) embedded between ground
plane and center conductor of the resonator. Bottom left,
qubits A and C, of same dimensions as qubit B, are shown at
reduced scale. Bottom right, magnified view of SQUID loop
of qubit B.

where gj is the coupling strength between the field and
qubit j. â† and â are the creation and annihilation oper-
ators of the field, σ̂+

j and σ̂−j are the corresponding op-
erators acting on the qubit j, and σ̂z

j is a Pauli operator.
The ground state |g, g, g〉 ⊗ |0〉 of the three-qubit/cavity
system is prepared by cooling the microchip to a temper-
ature of 20 mK in a dilution refrigerator.

First we investigate the resonant coupling of the |g〉 to
|e〉 transition of qubit A to the first harmonic mode of the
resonator. We measure the anti-crossing between qubit
A (νA) and the cavity (νr) by populating the resonator
with much less than a photon on average. We record the
resulting transmission spectrum T versus magnetic flux
ΦA controlled detuning of qubit A (Fig. 3 a). Qubits B
and C remain maximally detuned from the resonator at
ΦB = ΦC = Φ0/2 where they do not affect the measure-
ment. At finite detuning (left hand side of Fig. 3a) we
observe a shift of the resonator spectrum which increases
with decreasing detuning due to the dispersive interac-
tion with qubit A.

On resonance (ωj = ωr) and in the presence of just one
two level system (N = 1), Eq. (1) reduces to the Jaynes-
Cummings Hamiltonian [18]. The eigenstates |N,n ±〉 of
this system in the presence of a single excitation n = 1 are
the symmetric and anti-symmetric qubit-photon super-
positions |1, 1±〉 = 1/

√
2 (|g, 1〉± |e, 0〉) (Fig. 4 a) where

the excitation is equally shared between qubit and pho-
ton. Accordingly, we observe a clean vacuum Rabi mode
splitting spectrum formed by the states |1, 1±〉 (Fig. 3
b). From analogous measurements performed on qubits
B and C (not shown) we obtain the single qubit coupling
constants gj listed in Tab. I. The coupling strengths are
virtually identical with a scatter of only a few MHz. The
strong coupling of an individual photon and an individ-
ual two-level system has been observed in a wealth of dif-
ferent realizations of cavity QED both spectroscopically
[15, 19, 20] and in time-resolved experiments [21, 22].
The regime of multiple excitations n which proves field
quantization in these systems has been reported both in
the time resolved results cited above and more recently
also in spectroscopic measurements [23–25].

In a next step, we maintain qubit A at degeneracy
(νA = νr), where we observed the one-photon one-qubit
doublet (see left of Fig. 3c). Qubit B remains far detuned

Qubit j ECj /h (MHz) EJmaxj
/h (GHz) gj/2π(MHz)

A 283 224 83.7

B 287 226 -85.7

C 294 214 85.1

TABLE I: Qubit and qubit-resonator coupling parameters.
The single electron charging energy ECj , the maximum
Josephson energy EJmaxj extracted from spectroscopic mea-
surements and the coupling strengths gj obtained from res-
onator transmission measurements for qubits A, B and C.
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FIG. 3: Vacuum Rabi mode splitting with one, two and three qubits. (a) Measured resonator transmission spectrum T (blue,
low and red, high transmission) versus normalized external flux bias ΦA/Φ0 of qubit A. Dash-dotted white lines indicate bare
resonator νr and qubit νA frequencies and dashed white lines are calculated transition frequencies νg0,Nn± between |g, 0〉 and
|N, n±〉. (b) Resonator transmission T/Tmax at degeneracy normalized to the maximum resonator transmission Tmax measured
at ΦA,B,C = Φ0/2 (not shown), as indicated with arrows in (a). Red line is a fit to two Lorentzians. (c) Resonator transmission
spectrum T/Tmax versus external flux bias ΦC/Φ0 of qubit C with qubit A degenerate with the resonator (νA = νr). (d)
Transmission spectrum T/Tmax at flux as indicated in (c). (e) Transmission spectrum versus flux ΦB/Φ0 with both qubits A
and C at degeneracy (νA = νC = νr). The white dashed line at frequency νg0,31d1,2 = νr indicates the dark state occurring at
degeneracy. (f) Transmission spectrum T/Tmax at flux as indicated in (e).

(ΦB = Φ0/2) for the entire measurement. Qubit C is then
tuned through the already coupled states from lower to
higher values of flux ΦC. In this case, the doublet states
|1, 1±〉 of qubit A are found to be dispersively shifted
due to non-resonant interaction with qubit C (Fig. 3 c).
When both qubits and the resonator are exactly in res-
onance, the transmission spectrum T (Fig. 3 d) shows
only two distinct maxima corresponding to the doublet
|2, 1±〉 = 1/

√
2 |g, g〉 ⊗ |1〉 ± 1/2 (|e, g〉 + |g, e〉) ⊗ |0〉

with eigenenergies h̄(ωr ± G2). Here a single excita-
tion is shared between one photon, with probability 1/2,
and two qubits, with probability 1/4 each (Fig. 4 b).
Both states have a photonic component and can be ex-
cited from the ground state |g, g, g〉 ⊗ |0〉 by irradiat-
ing the cavity with light. These are thus referred to as
bright states. In general we expect N + n = 3 eigen-
states for two qubits and one photon. The third state
|2, 1d〉 = 1/

√
2(|e, g〉− |g, e〉)⊗|0〉 with energy h̄ωr at de-

generacy has no matrix element with a cavity excitation
and is referred to as a dark state. Accordingly we observe
no visible population in the transmission spectrum at fre-
quency νr at degeneracy. In this regime the two qubits
behave like one effective spin with the predicted [26] cou-
pling strength G2 =

√
2 gAC with gAC =

√
1/2(g2

A + g2
C),

which is indicated by dashed black lines in Fig. 3 d. This
prediction is in very good agreement with our measure-
ment.

Following the same procedure, we then flux tune qubit
B through the already resonantly coupled states of qubits
A, C and the cavity (νA = νC = νr), (Fig. 3 e). We ob-
serve the energies of three out of N + n = 4 eigenstates,

the fourth one being dark, for a range of flux values ΦB .
Starting with the dark state |2, 1d〉 at frequency νr and
the doublet |2, 1±〉 (left part of Fig. 3 e), the presence of
qubit B dresses these states and shifts the doublet |2, 1±〉
down in frequency. Again one of these states turns dark
as it approaches degeneracy where it is entirely mixed
with qubit B. At degeneracy we identify two bright dou-
blet states |3, 1±〉 = 1/

√
2 |g, g, g〉⊗|1〉±1/

√
6 (|e, g, g〉−

|g, e, g〉+ |g, g, e〉)⊗ |0〉 (Fig. 4 c). The part of the states
|3, 1±〉 carrying the atomic excitation is a so called W -
state, in which a single excitation is equally shared among

3
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FIG. 4: Level diagram representing the total energy of (a)
one (b) two and (c) three qubits resonantly coupled to a sin-
gle photon. Bare energy levels of the qubits |g〉, |e〉 and the
cavity |0〉, |1〉 are shown in black. The bright dressed energy
levels |N, n±〉, with N the number of qubits, n the number of
excitations and ± indicating the symmetry of the state, are il-
lustrated in blue. The areas of the circles indicate the relative
population of the bare states in the eigenstates |N, n±〉.
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FIG. 5: Scaling of the collective dipole coupling strength.
Measured coupling constants (blue dots) extracted from Fig. 3
and nine similar data sets and theoretical scaling (red line).

all N qubits [27]. Both |3, 1±〉 states are clearly visible
in the transmission spectrum shown in Fig. 3 f.

In addition, there are two dark states
|3, 1d1〉 = 1/

√
2(|e, g, g〉 − |g, g, e〉) ⊗ |0〉 and

|3, 1d2〉 = 1/
√

2(|g, e, g〉 + |g, g, e〉) ⊗ |0〉 which do
not lead to resonances in the transmission spectrum
at degeneracy. In general all N + n − 2 dark states
are degenerate at energy h̄ωr. The symmetries of the
dressed three-qubit states are determined by the signs
of the coupling constants gA ≈ −gB ≈ gC. While our
measurement is not sensitive to the sign of coupling,
it is a simple consequence of the phase shift of the
electric field mode by π between the ends and the center
of the resonator. Again, the observed transmission
peak frequencies are in agreement with the calculated
splitting of the doublet G3 =

√
3 gABC (dashed black

lines in Fig. 3 f). Also at finite detunings the measured
energies of all bright states are in excellent agreement
with the predictions based on the Tavis-Cummings
model (dashed white lines in Fig. 3 a,c,e) using the
measured qubit and resonator parameters. We have also
performed analogous measurements of all twelve one,
two and three qubit anti-crossings (nine are not shown)
and find equally good agreement.

In Fig. 5 all twelve measured coupling strengths (blue
dots) for one, two and three qubits at degeneracy are
plotted vs. N . Excellent agreement with the expected
collective interaction strength GN =

√
N gABC (red

line) is found without any fit parameters and gABC =
84.8 MHz.

Our spectroscopic measurements clearly demonstrate
the collective interaction of a discrete number of quan-
tum two-state systems mediated by an individual pho-
ton. All results are in good agreement with the predic-
tions of the basic Tavis-Cummings model in the absence
of any number, position or coupling fluctuations. The
presented approach may enable novel investigations of
super- and sub-radiant states of artificial atoms. Flux
tuning on nanosecond timescales should furthermore al-
low the controlled generation of Dicke states [28, 29] and
fast entanglement generation via collective interactions

[30, 31], not relying on individual qubit operations. This
could be used for quantum state engineering and an im-
plementation of Heisenberg limited spectroscopy [32] in
the solid state.
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