
Coplanar Waveguide Resonators for Circuit Quantum Electrodynamics
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We have designed and fabricated superconducting coplanar waveguide resonators with funda-
mental frequencies from 2 to 9 GHz and loaded quality factors ranging from a few hundreds to a
several hundred thousands reached at temperatures of 20 mK. The loaded quality factors are con-
trolled by appropriately designed input and output coupling capacitors. The measured transmission
spectra are analyzed using both a lumped element model and a distributed element transmission
matrix method. The experimentally determined resonance frequencies, quality factors and insertion
losses are fully and consistently characterized by the two models for all measured devices. Such
resonators find prominent applications in quantum optics and quantum information processing with
superconducting electronic circuits and in single photon detectors and parametric amplifiers.

I. INTRODUCTION

Superconducting coplanar waveguide (CPW) res-
onators find a wide range of applications as radiation de-
tectors in the optical, UV and X-ray frequency range1–5,
in parametric amplifiers6–8, for magnetic field tunable
resonators7,9,10 and in quantum information and quan-
tum optics experiments11–22.

In this paper we discuss the use of CPWs in the con-
text of quantum optics and quantum information pro-
cessing. In the recent past it has been experimentally
demonstrated that a single microwave photon stored in
a high quality CPW resonator can be coherently coupled
to a superconducting quantum two-level system11. This
possibility has lead to a wide range of novel quantum op-
tics experiments realized in an architecture now known as
circuit quantum electrodynamics (QED)11. The circuit
QED architecture is also successfully employed in quan-
tum information processing23 for coherent single qubit
control11, for dispersive qubit read-out12 and for cou-
pling individual qubits to each other using the resonator
as a quantum bus17,20.

Coplanar waveguide resonators have a number of ad-
vantageous properties with respect to applications in cir-
cuit QED. CPWs can easily be designed to operate at
frequencies up to 10 GHz or higher. Their distributed el-
ement construction avoids uncontrolled stray inductances
and capacitances allowing for better microwave prop-
erties than lumped element resonators. In comparison
to other distributed element resonators, such as those
based on microstrip lines, the impedance of CPWs can
be controlled at different lateral size scales from millime-
ters down to micrometers not significantly constrained
by substrate properties. Their potentially small lateral
dimensions allow to realize resonators with extremely
large vacuum fields due to electromagnetic zero-point
fluctuations24, a key ingredient for realizing strong cou-
pling between photons and qubits in the circuit QED ar-
chitecture. Moreover, CPW resonators with large inter-
nal quality factors of typically several hundred thousands
can now be routinely realized25–28.

In this paper we demonstrate that we are able to de-
sign, fabricate and characterize CPW resonators with

well defined resonance frequency and coupled quality fac-
tors. The resonance frequency is controlled by the res-
onator length and its loaded quality factor is controlled
by its capacitive coupling to input and output trans-
mission lines. Strongly coupled (overcoupled) resonators
with accordingly low quality factors are ideal for perform-
ing fast measurements of the state of a qubit integrated
into the resonator12,29. On the other hand, undercoupled
resonators with large quality factors can be used to store
photons in the cavity on a long time scale, with potential
use as a quantum memory30.

The paper is structured as follows. In Sec. II we dis-
cuss the chosen CPW device geometry, its fabrication
and the measurement techniques used for characteriza-
tion at microwave frequencies. The dependence of the
CPW resonator frequency on the device geometry and its
electrical parameters is analyzed in Sec. III. In Sec. IV
the effect of the resonator coupling to an input/output
line on its quality factor, insertion loss and resonance fre-
quency is analyzed using a parallel LCR circuit model.
This lumped element model provides simple approxima-
tions of the resonator properties around resonance and
allows to develop an intuitive understanding of the de-
vice. We also make use of the transmission (or ABCD)
matrix method to describe the full transmission spec-
trum of the resonators and compare its predictions to
our experimental data. The characteristic properties of
the higher harmonic modes of the CPW resonators are
discussed in Sec. V.

II. DEVICE GEOMETRY, FABRICATION AND
MEASUREMENT TECHNIQUE

The planar geometry of a capacitively coupled CPW
resonator is sketched in Figure 1a. The resonator is
formed of a center conductor of width w = 10µm sepa-
rated from the lateral ground planes by a gap of width
s = 6.6µm. Resonators with various center conduc-
tor lengths l between 8 and 29 mm aiming at funda-
mental frequencies f0 between 2 and 9 GHz were de-
signed. These structures are easily fabricated in opti-
cal lithography while providing sufficiently large vacuum
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FIG. 1: (Color online) (a) Top view of a CPW resonator
with finger capacitors (l.h.s.) and gap capacitors (r.h.s.). (b)
Cross section of a CPW resonator design. Center conductor
and lateral ground metallization (blue) on top of a double
layer substrate (grey/yellow). Parameters are discussed in
the main text.

field strengths24. The center conductor is coupled via
gap- or finger capacitors to the input and output trans-
mission lines. For small coupling capacitances gap capac-
itors of widths wg = 10 to 50µm have been realized. To
achieve larger coupling, finger capacitors formed by from
one up to eight pairs of fingers of length lf = 100µm,
width wf = 3.3µm and separation sf = 3.3µm have been
designed and fabricated, see Fig. 1.

The resonators are fabricated on high resistivity, un-
doped, (100)-oriented, thermally oxidized two inch sili-
con wafers. The oxide thickness is h2 = 550 nm±50 nm
determined by SEM inspection. The bulk resistivity of
the Si wafer is ρ > 3000 Ω cm determined at room tem-
perature in a van-der-Pauw measurement. The total
thickness of the substrate is h1 = 500µm±25µm. A
cross-sectional sketch of the CPW resonator is shown in
Fig. 1b.

The resonators were patterned in optical lithography
using a one micron thick layer of the negative tone re-
sist ma-N 1410. The substrate was subsequently met-
allized with a t = 200 nm±5 nm thick layer of Al, elec-
tron beam evaporated at a rate of 5 Å/sec and lifted-off
in 50◦ C hot acetone. Finally, all structures were diced
into 2 mm× 7 mm chips, each containing an individual
resonator. The feature sizes of the fabricated devices de-
viate less than 100 nm from the designed dimensions as
determined by SEM inspection indicating a good control
over the fabrication process.

Altogether, more than 80 Al CPW resonators covering
a wide range of different coupling strengths were designed
and fabricated. More than 30 of these devices were care-
fully characterized at microwave frequencies. Figure 2
shows optical microscope images of the final Al resonators
with different finger and gap capacitors.

Using a 40 GHz vector network analyzer, S21 transmis-
sion measurements of all resonators were performed in a
pulse-tube based dilution refrigerator system31 at tem-
peratures of 20 mK. The measured transmission spectra
are plotted in logarithmic units (dB) as 20 log10 |S21|.
High Q resonators were measured using a 32 dB gain
high electron mobility transistor (HEMT) amplifier with
noise temperature of ∼ 5 K installed at the 4 K stage of
the refrigerator as well as one or two room temperature
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FIG. 2: (Color online) Optical microscope images of an Al
coplanar waveguide resonator (white is metallization, grey is
substrate). The red squares in the upper image indicate the
positions of the input/output capacitors. Also shown are mi-
croscope images of finger- and gap capacitor structures. The
labels D, E, H, I, K refer to the device ID listed in Tab. II.

amplifiers with 35 dB gain each. Low Q resonators were
characterized without additional amplifiers.

The measured Q of undercoupled devices can vary
strongly with the power applied to the resonator. In our
measurements of high Q devices the resonator transmis-
sion spectrum looses its Lorentzian shape at drive powers
above approximately −70 dBm at the input port of the
resonator due to non-linear effects32. At low drive pow-
ers, when dielectric resonator losses significantly depend
on the photon number inside the cavity28,33, measured
quality factors may be substantially reduced. We ac-
quired S21 transmission spectra at power levels chosen
to result in the highest measurable quality factors, i.e. at
high enough powers to minimize dielectric loss but low
enough to avoid non-linearities. This approach has been
chosen to be able to focus on geometric properties of the
resonators.

III. BASIC RESONATOR PROPERTIES

A typical transmission spectrum of a weakly gap ca-
pacitor coupled (wg = 10µm) CPW resonator of length
l = 14.22 mm is shown in Figure 3a. The spectrum
clearly displays a Lorentzian lineshape of width δf cen-
tered at the resonance frequency f0. Figure 3b shows
measured resonance frequencies f0 for resonators of dif-
ferent length l, all coupled via gap capacitors of widths
wg = 10µm. Table I lists the respective values for l and
f0. For these small capacitors the frequency shift induced
by coupling can be neglected, as discussed in a later sec-
tion. In this case the resonator‘s fundamental frequency
f0 is given by

f0 =
c
√
εeff

1
2l
. (1)
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a) b)FIG. 3: (Color online) (a) Transmission spectrum of a 4.7
GHz resonator. Data points (blue) were fitted (black) with a
Lorentzian line. (b) Measured f0 (red points) of several res-
onators coupled via wg = 10µm gap capacitors with different
l together with a fit (blue line) to the data using Eq. (1) as
fit function and εeff as fit parameter.

f0 (GHz) l (mm)

2.3430 28.449

3.5199 18.970

4.6846 14.220

5.8491 11.380

7.0162 9.4800

8.1778 8.1300

TABLE I: Designed values for resonator lengths l and mea-
sured resonance frequencies f0, corresponding to the data
shown in Fig. 3.

Here, c/
√
εeff = vph is the phase velocity depending on

the velocity of light in vacuum c and the effective permit-
tivity εeff of the CPW line. εeff is a function of the waveg-
uide geometry and the relative permittivities ε1 and ε2 of
substrate and the oxide layer, see Fig. 1b. Furthermore,
2l = λ0 is the wavelength of the fundamental resonator
mode. The length dependence of the measured reso-
nance frequencies f0 of our samples is well described by
Eq. (1) with the effective dielectric constant εeff = 5.05,
see Fig. 3b.

The phase velocity vph = 1/
√
L`C` of electromagnetic

waves propagating along a transmission line depends on
the capacitance C` and inductance L` per unit length of
the line. Using conformal mapping techniques the geo-
metric contribution to L` and C` of a CPW line is found
to be34,35

L` =
µ0

4
K(k′0)
K(k0)

, (2)

C` = 4ε0εeff
K(k0)
K(k′0)

. (3)

Here, K denotes the complete elliptic integral of the first

ID Coupling Cκ (fF) f0 (GHz) QL

A 8 + 8 finger 56.4 2.2678 3.7 · 102

B 7 + 7 finger 48.6 2.2763 4.9 · 102

C 6 + 6 finger 42.9 2.2848 7.5 · 102

D 5 + 5 finger 35.4 2.2943 1.1 · 103

E 4 + 4 finger 26.4 2.3086 1.7 · 103

F 3 + 3 finger 18.0 2.3164 3.9 · 103

G 2 + 2 finger 11.3 2.3259 9.8 · 103

H 1 + 1 finger 3.98 2.3343 7.5 · 104

I 10µm gap 0.44 2.3430 2.0 · 105

J 20µm gap 0.38 2.3448 2.0 · 105

K 30µm gap 0.32 2.3459 2.3 · 105

L 50µm gap 0.24 2.3464 2.3 · 105

TABLE II: Properties of the different CPW resonators whose
transmission spectra are shown in Fig. 4. Cκ denotes the
simulated coupling capacitances, f0 is the measured resonance
frequency and QL is the measured quality factor.

kind with the arguments

k0 =
w

w + 2s
, (4)

k′0 =
√

1− k2
0. (5)

For non magnetic substrates (µeff = 1) and neglecting ki-
netic inductance for the moment L` is determined by the
CPW geometry only. C` depends on the geometry and
εeff . Although analytical expressions for εeff exist for dou-
ble layer substrates deduced from conformal mapping34,
the accuracy of these calculations depends sensitively on
the ratio between substrate layer thicknesses and the di-
mensions of the CPW cross-section36 and does not lead
to accurate predictions for our parameters. Therefore,
we have calculated C` ≈ 1.27 · 10−10 Fm−1 using a finite
element electromagnetic simulation and values ε1 = 11.6
(see Ref. 37) for silicon and ε2 = 3.78 (see Ref. 37) for
silicon oxide for our CPW geometry and substrate. From
this calculation we find εeff ≈ 5.22 which deviates only
by about 3% from the value extracted from our measure-
ments. The characteristic impedance of a CPW is then
given by Z0 =

√
L`/C` which results in a value of 59.7 Ω

for our geometry. This value deviates from the usually
chosen value of 50 Ω as the original design was optimized
for a different substrate material.

In general, for superconductors the inductance L` is
the sum of the temperature independent geometric (mag-
netic) inductance Lm

` and the temperature dependent
kinetic inductance Lk

` (see Ref. 38). For superconduc-
tors, Lk

` refers to the inertia of moving Cooper pairs
and can contribute significantly to L` since resistivity
is suppressed and thus charge carrier relaxation times
are large. According to Ref. 35, Lk

` scales with λ2(T ),
where λ(T ) is the temperature dependent London pen-
etration depth which can be approximated as35 λ(0) =
1.05·10−3

√
ρ(Tc)/Tc

√
K m/Ω at zero temperature in the
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FIG. 4: (Color online) S21 transmission spectra of 2.3 GHz resonators, symmetrically coupled to input/output lines. The left
part of the split plot shows spectra of finger capacitor coupled resonators whereas on the right hand side one can see spectra
of gap capacitor coupled resonators. The data points (blue) were fitted (black) with the transmission matrix method, see text.

local and dirty limits. In the dirty (local) limit the mean
free path of electrons lmf is much less than the coherence
length ξ0 = h̄vf/π∆(0), where vf is the Fermi velocity
of the electrons and ∆(0) is the superconducting gap en-
ergy at zero temperature39. The clean (nonlocal) limit
occurs when lmf is much larger than ξ0 (see Ref. 39).
Tc = 1.23 K is the critical temperature of our thin film
aluminum and ρ(Tc) = 2.06 ·10−9 Ω m is the normal state
resistivity at T = Tc. Tc and ρ(T ) were determined in a
four-point measurement of the resistance of a lithograph-
ically patterned Al thin film meander structure from the
same substrate in dependence on temperature. The re-
sulting residual resistance ratio (RRR300 K/1.3 K) is 8.6.
Since our measurements were performed at temperatures
well below Tc, λ = λ(0) approximately holds and we find
λ(0) ≈ 43 nm for our Al thin films (compared to a value of
40 nm, given in Ref. 40). Using the above approximation
shows that Lk

` is about two orders of magnitude smaller
than Lm

` = 4.53 ·10−7 Hm−1 legitimating the assumption
L` ≈ Lm

` made in Eq. (2). Kinetic inductance effects in
Niobium resonators are also analyzed in Ref. 25.

IV. INPUT/OUTPUT COUPLING

To study the effect of the capacitive coupling strength
on the microwave properties of CPW resonators, twelve
2.3 GHz devices, symmetrically coupled to input/output
lines with different gap and finger capacitors have been
characterized, see Table II for a list of devices. The mea-
sured transmission spectra are shown in Fig. 4. The left
hand part of Fig. 4 depicts spectra of resonators cou-
pled via finger capacitors having 8 down to one pairs of
fingers (devices A to H). The right hand part of Fig. 4
shows those resonators coupled via gap capacitors with
gap widths of wg = 10, 20, 30 and 50µm (devices I to
L) respectively. The coupling capacitance continuously
decreases from device A to device L. The nominal val-
ues for the coupling capacitance Cκ obtained from EM-

simulations for the investigated substrate properties and
geometry are listed in table II. The resonance frequency
f0 and the measured quality factor QL = f0/δf of the
respective device is obtained by fitting a Lorentzian line
shape

FLor(f) = A0
δf

(f − f0)2 + δf2/4
, (6)

to the data, see Fig. 3a, where δf is the full width half
maximum of the resonance. With increasing coupling ca-
pacitance Cκ, Fig. 4 shows a decrease in the measured
(loaded) quality factor QL and an increase in the peak
transmission, as well as a shift of f0 to lower frequencies.
In the following, we demonstrate how these character-
istic resonator properties can be fully understood and
modeled consistently for the full set of data.

A transmission line resonator is a distributed device
with voltages and currents varying in magnitude and
phase over its length. The distributed element represen-
tation of a symmetrically coupled resonator is shown in
Fig. 5a. R`, L` and C` denote the resistance, inductance
and capacitance per unit length, respectively. According
to Ref. 41 the impedance of a TL resonator is given by

ZTL = Z0
1 + i tanβl tanhαl
tanhαl + i tanβl

(7)

≈ Z0

αl + i πω0
(ω − ωn)

. (8)

α is the attenuation constant and β = ωn/vph is the phase
constant of the TL. The approximation in Eq. (8) holds
when assuming small losses (αl � 1) and for ω close to
ωn. Here, ωn = nω0 = 1/

√
LnC is the angular frequency

of the n-th mode, where n denotes the resonance mode
number (n = 1 for the fundamental mode).

Around resonance, the properties of a TL resonator can
be approximated by those of a lumped element, parallel
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FIG. 5: (Color online) (a) Distributed element representation of symmetrically coupled TL resonator. (b) Parallel LCR
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explained in text.

LCR oscillator, as shown in Fig. 5b, with impedance

ZLCR =
(

1
iωLn

+ iωC +
1
R

)−1

(9)

≈ R

1 + 2iRC(ω − ωn)
, (10)

and characteristic parameters

Ln =
2L`l
n2π2

, (11)

C =
C`l

2
, (12)

R =
Z0

αl
. (13)

The approximation Eq. (10) is valid for ω ≈ ωn. The
LCR model is useful to get an intuitive understanding
of the resonator properties. It simplifies analyzing the
effect of coupling the resonator to an input/output line
on the quality factor and on the resonance frequency as
discussed in the following.

The (internal) quality factor of the parallel LCR os-
cillator is defined as Qint = R

√
C/Ln = ωnRC. The

quality factor QL of the resonator coupled with capaci-
tance Cκ to the input and output lines with impedance
Z0 is reduced due to the resistive loading. Additionally,
the frequency is shifted because of the capacitive loading
of the resonator due to the input/output lines. To under-
stand this effect the series connection of Cκ and RL can
be transformed into a Norton equivalent parallel connec-
tion of a resistor R∗ and a capacitor C∗, see Figs. 5b, c,
with

R∗ =
1 + ω2

nC
2
κR

2
L

ω2
nC

2
κRL

, (14)

C∗ =
Cκ

1 + ω2
nC

2
κR

2
L

. (15)

The small capacitor Cκ transforms the RL = 50 Ω
load into the large impedance R∗ = RL/k

2 with k =
ωnCκRL � 1. For symmetric input/output coupling the
loaded quality factor for the parallel combination of R
and R∗/2 is

QL = ω∗n
C + 2C∗

1/R+ 2/R∗
(16)

≈ ωn
C

1/R+ 2/R∗
(17)

with the n-th resonance frequency shifted by the capac-
itive loading due to the parallel combination of C and
2C∗

ω∗n =
1√

Ln(C + 2C∗)
. (18)

For ω∗n ≈ ωn with C + 2C∗ ≈ C, the Norton equivalent
expression for the loaded quality factor QL is a parallel
combination of the internal and external quality factors

1
QL

=
1
Qint

+
1

Qext
, (19)

with

Qint = ωnRC =
nπ

2αl
, (20)

Qext =
ωnR

∗C

2
. (21)

The measured loaded quality factor QL for devices A
to L is plotted vs. the coupling capacitance in Fig. 6a.
QL is observed to be constant for small coupling capac-
itances and decreases for large ones. In the overcoupled
regime (Qext � Qint), QL is governed by Qext which
is well approximated by C/2ωnRLC

2
κ, see dashed line in

Fig. 6. Thus, in the overcoupled regime the loaded qual-
ity factor QL ∝ C−2

κ can be controlled by the choice
of the coupling capacitance. In the undercoupled limit
(Qext � Qint) however, QL saturates at the internal
quality factor Qint ≈ 2.3 · 105 determined by the intrin-
sic losses of the resonator, see horizontal dashed line in
Fig. 6a.

Radiation losses are expected to be small in CPW
resonators42, resistive losses are negligible well below the
critical temperature Tc of the superconductor25 and at
frequencies well below the superconducting gap. We be-
lieve that dielectric losses limit the internal quality factor
of our devices, as discussed in References 33 and 28.

Using Eqs. (14, 19, 21), Cκ has been extracted from
the measured value of Qint ∼ 2.3 · 105 and the measured
loaded quality factors QL of the overcoupled devices A
to H, see Fig. 7. The experimental values of Cκ are in
good agreement with the ones found from finite element
calculations, listed in table II, with a standard deviation
of about 4%.

The insertion loss

L0 = −20 log
(

g

g + 1

)
dB (22)
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FIG. 6: (Color online) (a) Dependence of QL on Cκ. Data
points (red) are measured quality factors. These values are
compared to QL predictions by the mapped LCR model (solid
blue line) given by Eqs. (14, 19, 21). (b) Dependence of L0

on Cκ. Data points (red) show measured L0 values. The
values are compared to the mapped LCR model (solid blue
line) given by Eqs. (14, 21, 22). Dashed lines indicate the
limiting cases for small and large coupling capacitances (see
text).

of a resonator, i.e. the deviation of peak transmission
from unity, is dependent on the ratio of the internal
to the external quality factor which is also called the
coupling coefficient g = Qint/Qext (see Ref. 41). The
measured values of L0 as extracted from Fig. 4 are
shown in Fig. 6b. For g > 1 (large Cκ) the resonator is
overcoupled and shows near unit transmission (L0 = 0).
The resonator is said to be critically coupled for g = 1.
For g < 1 (small Cκ) the resonator is undercoupled and
the transmission is significantly reduced. In this case L0

is well approximated by −20 log(2ωnQintRLC
2
κ/C), see

dashed line in Fig. 6b, as calculated from Eqs. (14, 21,
22). Qext and Qint can be determined from QL and L0

using Eqs. (19, 22), thus allowing to roughly estimate
internal losses even of an overcoupled cavity.
For the overcoupled devices A to H the coupling induced

resonator frequency shift as extracted from Fig. 4 is in
good agreement with calculations based on Eqs. (15, 18),
see Fig. 7b. For C∗ ≈ Cκ and C � Cκ one can Taylor-
approximate ω∗n as ωn(1−Cκ/C). As a result the relative
resonator frequency shift is (ω∗n − ωn)/ωn = −Cκ/C
for symmetric coupling. Figure 7b shows the expected
linear dependence with a maximum frequency shift of
about 3% over a range of 60 fF in Cκ.

As an alternative method to the LCR model which is
only an accurate description near resonance we have an-
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alyzed our data using the transmission matrix method41.
Using this method the full transmission spectrum of the
CPW resonator can be calculated. However, because of
the mathematical structure of the model it is more in-
volved to gain intuitive understanding of the CPW de-
vices.

All measured S21 transmission spectra are consistently
fit with a single set of parameters, see Fig. 4. The trans-
mission or ABCD matrix of a symmetrically coupled TL
is defined by the product of an input-, a transmission-,
and an output matrix as(

A B

C D

)
=

(
1 Zin

0 1

)(
t11 t12

t21 t22

)(
1 Zout

0 1

)
, (23)

with input/output impedances Zin/out = 1/iωCκ and the
transmission matrix parameters

t11 = cosh (γl), (24)
t12 = Z0 sinh (γl), (25)
t21 = 1/Z0 sinh (γl), (26)
t22 = cosh (γl). (27)

Here, γ = α+ iβ is the TL wave propagation coefficient.
The resonator transmission spectrum is then defined by
the ABCD matrix components as

S21 =
2

A+B/RL + CRL +D
. (28)

Here, RL is the real part of the load impedance, account-
ing for outer circuit components. α is determined by Qint

and l and β depends on εeff as discussed before. Accord-
ing to Eqs. (2, 3) Z0 is determined by εeff , w and s. The
attenuation constant is α ∼ 2.4 ·10−4 m−1 as determined
from Qint ∼ 2.3 · 105.
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For gap capacitor coupled devices, the measured data
fits very well, see Fig. 4, to the transmission spectrum cal-
culated using the ABCD matrix method with εeff = 5.05,
already obtained from the measured dependence of f0 on
the resonator length, see Fig. 3. For finger capacitor cou-
pled structures however, see Fig. 1a, approximately 40%
of the length of each 100µm finger has to be added to the
length l of the bare resonators in order to obtain good
fits to the resonance frequency f0. This result is inde-
pendent of the number of fingers. The ABCD matrix
model describes the full transmission spectra of all mea-
sured devices very well with a single set of parameters,
see Fig. 4.

V. HARMONIC MODES

So far we have only discussed the properties of the
fundamental resonance frequency of any of the measured
resonators. A full transmission spectrum of the overcou-
pled resonator D, including 5 harmonic modes, is shown
in Fig. 8. The measured spectrum fits well to the ABCD
matrix model for the fundamental frequency and also for
higher cavity modes, displaying a decrease of the loaded
quality factor with harmonic number. The dependence
of the measured quality factor QL on the mode number
n is in good agreement with Eqs. (19, 21) and scales ap-
proximately as C/2nω0RLC

2
κ.

VI. CONCLUSIONS

In summary, we have designed and fabricated symmet-
rically coupled coplanar waveguide resonators over a wide
range of resonance frequencies and coupling strengths.
We demonstrate that loaded quality factors and reso-
nance frequencies can be controlled and that the LCR-
and ABCD matrix models are in good agreement with
measured data for fundamental and harmonic modes. In
the case of resonators coupled via finger capacitors simu-
lated values for Cκ deviate by only about 4%. About 40%
of the capacitor finger length has to be added to the to-
tal resonator length to obtain a good fit to the resonance
frequency.

The resonator properties discussed above are consis-
tent with those obtained from measurements of addi-
tional devices with fundamental frequencies of 3.5, 4.7,
5.8, 7.0 and 8.2 GHz. The experimental results presented
in this paper were obtained for Al based resonators on
an oxidized silicon substrate. The methods of analysis

should also be applicable to CPW devices fabricated on
different substrates and with different superconducting
materials. The good understanding of geometric and
electrical properties of CPW resonators will certainly fos-
ter further research on their use as radiation detectors,
in quantum electrodynamics and quantum information
processing applications.
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FIG. 8: Measured quality factors for the overcoupled res-
onator D vs. mode number n (red points) together with the
prediction of the mapped LCR model given by Eqs. (18, 21)
(solid blue line). The inset shows the S21 transmission spec-
trum of resonator D with fundamental mode and harmonics.
The measured data (blue) is compared to the S21 spectrum
(black) obtained by the ABCD matrix method.
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acknowledge the ETH Zürich FIRST Center for Micro-
and Nanoscience for providing and supporting the device
fabrication infrastructure essential for this project. We
acknowledge discussions with J. Martinis and K. Lehn-
ert and thank D. Schuster for valuable comments on the
manuscript. This work was supported by Swiss National
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