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New resonance steps are found in the experimental current-voltage characteristics of long, discrete,
one-dimensional Josephson junction arrays with open boundaries and in an external magnetic field.
The junctions are underdamped, connected in parallel, and dc biased. Numerical simulations based
on the discrete sine-Gordon model are carried out, and show that the solutions on the steps are
periodic trains of fluxons, phase locked by a finite amplitude radiation. Power spectra of the voltages
consist of a small number of harmonic peaks, which may be exploited for possible oscillator
applications. The steps form a family that can be numbered by the harmonic content of the radiation,
the first member corresponding to the Eck step. Discreteness of the arrays is shown to be essential
for appearance of the higher order steps. We use a multimode extension of the harmonic balance
analysis, and estimate the resonance frequencies, the ac voltage amplitudes, and the theoretical limit
on the output power on the first two steps. 1®97 American Institute of Physics.
[S0021-897€07)00919-5

I. INTRODUCTION w=2mV/®,, whered, is the flux quantum, while the spa-
tial wave number is determined by the applied magnetic

Josephson junction systems have a natural application ag|d, k=2xf, wheref is the applied flux per unit cell nor-
millimeter- and submillimeter-wave oscillators. To facilitate ygjized tod,. The oscillations can be approximated as the
their use, however, ongoing research must address sevefrmal modes to the linearized system. This approach has
issues. To produce oscillators with narrow linewidths andyeen used successfully to predict resonance frequencies, or
high power, we must study the harmonic content and oscilsteps in thd —V characteristics of many different geometries
lation amplitudes of Josephson sources. Furthermore, thgr Josephson systems. The dependence of the step voltage on
conditions under which many Josephson oscillators can bﬁpplied magnetic field can be included, thus giving a disper-
phase locked to produce higher output power continue tQjon relation for the associated oscillations. In the discrete
challenge researchers. case, the dispersion relation is nonlinear, and higher mode

ac power has been measured from both continuous longayves are expected to produce distinct steps inl thé 12
Josephson junctions and discrete arrays of short junctions. i8ne of the limitations of these linear analyses is that the
underdamped Josephson systems, the ac oscillation ampfiregicted oscillations are necessarily single harmonic, since
tudes are expected to be largest at certain resonant frequefe normal modes of the linearized Josephson system are
cies. Much analytical work has been done to predict the freSimpIy Fourier modes. In addition, the absence of a driving
quency of these resonances. The success of these analyggge in the linearized system precludes any calculation of
can be assessed by studying the dc current-voltag®)(  the oscillation amplitudes.
characteristics. Steps appear in theV when increases of In order to predict oscillation amplitudes and the distri-
Fhe current bias over a certain range do not produ_ce InCreasggtion of power among excited modes, the nonlinearity in
in the dc voltage. Instead, the input power drives largeéyhe system must be more carefully treated. Perturbation
gmplltude ac oscillations. The frequency of these OSCIllatI9n§echnique§4 clarify the role of the nonlinearity in driving the
is related to the dc voltage by the Josephson relationegonance and have been used to predict step voltages in
Josephson systems. Combined with an appropriate ansatz,
dElectronic mail: duwel@bardeen.mit.edu they also provide expressions for the oscillation
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FIG. 1. Schematic of an open-ended parallel array. A uniform cutkgist
applied at each of the upper nodes and extracted at the lower nodes.
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amplitude?™" However, analytic expressions for the ac am- V (mV)
plitudes so far include only the first harmonic and are
implicit.®

hi icl . . lati d FIG. 2. Current vs voltage of a 54-junction array on a ground plane at three
In this article we use experiments, simulations, an NON3a1yes off =0.2,0.3, and 0.5. The temperature is 7.2 K so thRt,=0.93

linear analysis to investigate the properties of discrete, planafv. The three steps indicated by the arrows are labeleth lwalues corre-
arrays of Josephson junctions connected in parallel. Both exponding to the number of dominant harmonics in the mode.

periments and simulations yield several resonant steps in the

I-V. Simulations indicate that on these steps, a traveling

wave pattern dominates the oscillations of junctions in thdancelL ;=®,/(2ml;)=5.90H. We use the normal-state re-
array. In contrast to the linear picture, these resonances cogistance to calculate the Stewart-McCumber parameter,
respond to excitations of more than one mode, though théc=16. The sub-gap resistance is not as well defined at these
harmonic content is still limited. Similar states have alreadyhigh temperatures but approaches the valu®f For the
been reported in discrete rinfsindicating that boundary _discreteness parameter, we calculafe=L;/L¢=0.92.
conditions play a minor role. In inductively coupled arrays  Figure 2 shows the voltage across an array when the
with open ends, the second harmonic resonance was al§frent is uniformly injected. Thre¢—V curves are pre-
observed experimenta|&We use a two-mode extension of Sented, fOI'f:O.Z, 0.3, and 0.5. The most prominent feature
the harmonic balance method to predict the resonant frds the sharp Eck step, which is the steepest part of &
quencies as well as the mode amplitudes at resonance. Oiyst before the switch to the gap voltageot shown. We
formulas are analytic and include the dependence on magdabel this step fn=1" for the reason given in the next sec-
netic field. With a matched load condition, a theoretical up-tion. In the regime wherg, is small(overdampeglor A is

per limit on the available output power of the underdampedarge (less discretg this is the only step observed. For our
Josephson oscillator is calculated. underdamped and discrete samples, however, additional

steps appear below the Eck voltage. We index these steps
with m=2,3, etc. In this article we are mostly concerned
with the Eck stegn=1 and, among the new steps, the clear-
We have measured single-row arrays\6f 54 junctions  est one withm=2. The study of the second step sheds light
connected in parallel. Figure 1 shows a schematic of ouon the finer steps witm>2.
device. A bias currenit, is applied at each upper node of the The voltage locations of the peaks experimentally vary
array and extracted from each bottom node as shown. Weith f, as seen in Fig. 2. More systematically, we show the
use resistors to distribute the bias current as evenly as podependence of the first two steps in Fig. 3. The Eck peak
sible. The voltage across the array is measured at an edgeoltage is found to be periodic ihwith periodf=1 and to
The array is placed above a superconducting ground planbge approximately symmetric with respect fte-0.5. This is
and a separate control lin@ot shown is used to apply a consistent with previous observatiolisAt f=0.5, the Eck
magnetic field. We will discuss the applied field in terms of step reaches its highest voltage value. For a smé]ldrere
the frustration, f (the flux applied to a single loop of the is a threshold frustration, below which the Eck step does not
array, normalized to the flux quantynBecause the system appear. This cutoff;;, known as the lower critical field or
is discrete, we expect its properties to be periodi¢ imith  frustration, is the minimum applied flux density for vortices
periodf =1 In this experiment, the applied flux is propor- to enter an array® The value is quite large for our system,
tional to the control current. fo~2/(7?A;)=0.2. The voltage location of the second step
Samples were fabricated using a Nb trilayer prodéss. shows roughly the same periodicity and symmetry as the
The junctions are & 3um? with a critical current density of Eck step. This second step, however, achieves the maximum
jc(T=0)=1270A/cnt. Device parameters have been deter-voltage nearf=0.25, and it disappears neé#0.5 and for
mined using the diagnostic procedures described by van depproximatelyf <f ;.
Zantet al*? For our samples at 7.2 K, the normal-state resis- The Eck (n=1) steps are ubiquitous in one-dimensional
tanceR,=16.61, the self-inductance of a loops=6.4pH, parallel arrays as well as in continuous long junctions. In
the nearest-neighbor inductive couplind,=0.11 ., the contrast, the other stepsn{&1) do not appear in long con-
junction capacitanceC=340fF, and the Josephson induc- tinuous junctions, but do appear in discrete arrays whgn

IIl. MEASUREMENTS OF ARRAYS
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is small. In our arrays, we f|r_1d_J must be less than unity for = Lopcbeo, 0099%00;\
the m=2 step to appear. Similar steps have been observed > 02| \ 00 .
also in highly discrete circular arré/and open-ended arrays Y ) m=2
consisting of two rows that are inductively coupfed. 01 | v/
In open-ended arrays with a smallby, Fiske stepS o
may be observed in a similar part of theV below the Eck 0 - R
voltage. We emphasize, however, that they are qualitatively 0 02 04 06 08 I
different. Fiske resonances can be described as standing f
waves (cavity mode} resulting from boundary reflections. (b)

The wavelength of the modes is restricted by the boundary
geometry and, consequently, the resonance voltage locatiogfs. 4. () Simulated current-voltage characteristic for a 54-junction array
do not depend strongly of. At a certain value off, only  at f=0.3. The three most prominent steps are markiedVoltages corre-
even or only odd modes are excited. Mdecomes large, for sponding to the top of the steps show the tunability of the first two steps
a given value of damping, these Fiske resonances disappé ith magnetic fizeld. The parameters are the experimental vajges16

. : . =0.25) andA7=0.92.
due to damping of the edge reflections. None of these fea- ) ’
tures apply for the Eck step as well as the-1 steps, which

are tunable irf. Thus, the new steps are expected to bEIOnqesponsible for the observed steps but also reproduces the

to the same family as the Eck step. measurements reasonably well, as we will show in this sec-
tion.

Ill. SIMULATIONS With only self-inductance, the boundary conditions are

The governing equations which model our arrays are de§|mply

rived by applying Kirchhoff's current laws and using the do(t)=1(t)—27f and ¢y yq(t)=Pp(t)+27f
resistively shunted junctiofRSJ) model for the current (2

through a single junction. We normalize the currenti{o o gy t, where artificial junctionsp, and ¢y, are intro-
the voltage td (R,, and time toyL ;C (inverse plasma fre- 4,ced at the end points so that Eg). is valid atj =1 andN
quency. The equations are given in terms of the gauge-s well!® The fourth-order Runge-Kutta scheme with a time-
invariant phase differences across the junctiafis, where  gtapAt=1 is used for integrating the system. The instanta-
j=1,... N indexes the junction’s position. For simplicity neous voltage at junctionis simply proportional to the rate

we neglect all the cell inductances except the self-of the change of;, and is given in our normalization by
inductance, which results in the damped, driven, discrete

sine-Gordon model: VIR, =T'd¢;/dt. ©)

- . L P With Egs. (1-3), current-voltage characteristics are nu-

Gt L ditsing=lp/lct AS(djr1=2¢i+ dj-0) () merically obtained at differerft values using the parameters
forj=1,... N andl“zﬁgl’z. Our numerical code can in- Aj andI’ from our experiments. Figure(d shows the re-
clude longer range inductances as necessary, up to the fudults forf=0.3. The curve reproduces the measured one in
inductance matrix? However, our analysis in the next sec- Fig. 2 well, and at least three stefisdexed bym) are clear.
tion uses mainly Eq(1). Simulating the same equations al- (There is also a small step just below timee=1 step which
lows us to make a direct comparison with our analysis. Theve think arises from a different mechanignm a manner
simpler system not only illuminates the essential mechanismsimilar to Fig. 3, thef dependence of the step voltage loca-
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Such traveling wave solutions, consisting of a vortex and

Z ? :z ? Z T ringing, have been found in circular arrays with the periodic
boundary condition$!>’ In these systems, a vortex is

4n O amr 0 40 trapped in a ring and, as it circulates, it creates an oscillatory

2n t—» m t —» 2n t —» wake, which phase locks back to the vortex. It is not surpris-

ing that a nearly identical situation may arise in a linear array

(a) (b) (c) with open boundaries, if the array is sufficiently long. Instead

of a single circulating vortex, a vortex lattice propagates
through the array. A junction is swept periodically by a vor-
tex in both cases. There is, however, one major difference
between the two geometries. The magnetic field in the array
(which controls the vortex spacipgcan be continuously
tuned in the linear geometry while it is restricted to multiples
of @4 in a circular array due to the flux quantization.

FIG. 5. Time evolution of the phase of a junctips 27 in the center of an
array, biased on th@ m=1, (b) m=2, and(3) m=3 steps, respectively.
Note the increased frequency content as the mode number increases.

tions is shown in Fig. ). There are slight differences, but
the main features and voltage values are represented well.

Simulations allow us to study the solutions in detail. We
are especially interested in the system dynamics when biaséd. ANALYSIS
on top of a step. In Figs.(8—(c) the phase of the junction ) ) _ o
j=27 (located in the middle of the arrapn them=1,2,3 In this section we seek a more analytical description of
step, respectively, is shown as a function of time. The juncih® system, and estimate dc voltages at each step and the
tion appears to be in a periodic motion. Its phase increasedmplitudes of the ac voltage components. The simulations in
rapidly when a vortexkink) passes by, and it oscillates for thg previous section .suggest t.hat finding traveling wave so-
the period between passing vortices. In a mechanical analdytions to the governing Ed1) is the key to the estimates,
of a junction as an underdamped penduftfra,sudden over- Put this task is not simple in practice.
turn of the pendulum is followed by an overshoot, and the ~ The EQ.(1) may be viewed as a variation, in two re-
pendulum “rings” several times until the next vortex passesspectg, from thentegrable sine-Gordon partial differential
by. equation,

It appears in Fig. 5 that the solution on the stegor-
responds tan such ringings. This can be quantified by study-
ing the harmonic content of the voltagHsg. (3)]. Fourier
spectra of the voltages are shown in Fig&)6(c), respec- which possesses traveling kink solutions as exact solutions.
tively. On the stepm, the firstm harmonics are dominant, First, Eq.(1) is no longer a conservative equation, as it in-
and the higher harmonics have rapidly decaying magnitudesludes the external drivbias current,) and the loss ¢;)
Despite the presence of other harmonics, the steps are iterms. The added terms also break the integrability and exact
dexed by the ringing frequency. solutions are no longer known. A perturbation apprd&a

Similar plots for the other junctions inside the array ap-the conservative limi{l,,I"—0) has been developed to ap-
pear identical tog,,, except for a certain shift in the time proximate a kink solution.
axis. This suggests that the solutions are well approximated Second, the spatial derivative in Ed) is discretized in
by traveling waves. Near both ends of the array, reflection&q. (1). In general, nonlinear wave equations discretized on
from the ends change this picture. The boundary effectdattices may exhibit qualitatively different solutions from
however, decay within 4-5 junctions from the end, and aptheir continuous counterparts, and study of such
pear to play only a minor role in our long arrays. discreteness-induced effects is an active current topic in its
own right® For sine-Gordon systems, in particular, E)
was studied by Refs. 19, 20, and 21 without a loss term or a
drive, and it was found that propagation of a kink introduces
a background radiation which greatly influences the speed of

St SiNg= ¢,y (4)

0.6 0.6 0.6
. ! the kink. As far as we are aware, however, there has been no
= 04 R 04 attempt to estimate the amplitudes of the induced radiation,
Q02 , 0.2 02!, 3 especially in the driven case.
- | . ‘ ; , []: Strunz and Elméf recently transformed Ed1) into a
0 05 1 15 0 05 1 15 0 05 1 15 system of coupled modal equations and pointed out that the
frequency frequency frequency superharmonic resonance leads to creation of the radiated
(a) (b) (©) waves. They expanded a traveling wave form into Fourier

modes, which may not be the best expansion basis but is a
FIG. 6. Fourier spectra of the voltage corresponding to Fig@—¥§c), with convenient one. Since our Fourier spectrum in Fig. 6 shows

(@) step m=1, (b) step m=2, and(c) step m=3. Voltages are proportional to  only a small number of peaks, we may truncate most modes

the time derivative of the phase in Fig. 5. The average slope of the phas, ; : o . . .
plots corresponds to the dc voltage and is determined by the fundamenta%nd still obtain reasonable predictions. With this goal in

harmonic. The dc voltage was subtracted before computing the Fourier speEn'ndi_ we review the analysis of Ref. 17 in Sec. IV A. The_
tra. Note that onlyn harmonics are dominant for theth step. coupling terms among modes are truncated and analyzed in
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Sec. IV B, and we estimate the ac voltage amplitudes on ththe 1-V plane. The second term is also a function wof
steps. The available power from the array is then evaluatethrough theA,’s, and describes the deviation of theV
in Sec. IV C. curve from the ohmic the line.

The superharmonic resonaftenay occur in the alge-
braic systen{9,12 and lead to the creation of resonant steps
. in the I -V curve. For small’, the magnitude ofA,, would
A. Resonance mechanism and voltages . .

generically become large nedf,=0, that is, near

We look for traveling wave solutions of the discrete

sine-Gordon Eq(1) of the form w=onp/m m=12.... (13
ThenF, also becomes large, and theV deviates substan-
()= =x+(x), 5 . 0 - ’ :
¢i(0= 400 =x+¢(x) © tially from the ohmic line near these frequenci@s corre-
where sponding voltages This argument neglects the dependence
X=wt+ 27f] (6) of the coupling term§& ,, on the complex amplitudes,,, but

explains our measurements quite well. We plot Bcp) for
is the moving coordinate with the wave, and m=12 as dashed curves in Figs. 3 arft)4The agreement
(x+2m)=y(x). The fundamental frequenay is propor- s good without a fitting parameter.
tional to the dc voltage through the Josephson voltage-phase The right hand side of Eq13) is the phase velocity of
relation(3) while the spatial wave number is imposed by thethe mth mode on the discrete lattice. The left hand side can
external field. If the modulation were absent<0), then  pe viewed as the vortex velocity. Then, the relation can be
the boundary condition&) would be satisfied exactly. Since yjewed as the phase-locking condition of the vortex velocity
4 is not vanishing, they are satisfied only on average, an@ng the phase velocity of timath mode®*® In the absence of
there should be a correction to E(p). We neglect this the coupling term$,,, a resonance occurs when the vortex
boundary effect and will show that the simplification still |attice moves at the same velocity as one of the modes. We
leads to good estimates of the measurements and simulgpte that these resonance frequendieare distinct for dif-
tions. (In a circular array Eq(2) is replaced by the periodic  ferentm because of the sinusoidal dependence of the disper-
boundary conditionsp; . n(t) = ¢;(t) + 27M whereM isan  gjon relation(11) on m. If the second order difference in Eq.
integer-° There can be exact solutions of the fofEgs.(5) (1) were replaced by the second spatial derivative as in Eq.

and(6)] with f=M/N.) (4), the dispersion relation would depend linearlyranand
The periodic functionys can be expanded into Fourier the phase velocities of all the modes would be identical.
modes Consequently, there would be only one vortex velocity that
% can excite modes, and we would observe only one resonance
p(X)= DA™ (7)  voltage. This explains why only the Eck stéamong this
M= e

type of step is observed in a long continuous junction. In
with A*  =A,,. We setA,=0, without loss of generality, by this sense, our observation of the>1 steps is due to the
shifting the origin of time. The phase is an increasing discreteness of the system.

function of x, but the nonlinear term sihis 27 - periodic We also note that, in some parameter regime, the reso-
and can be expanded as nating modes may be sub harmonics of the fundamental fre-

quency. Sub-harmonic resonances of onderan be sought

sing(x) = E F_eimx ®) by generalizing Eq(7) to
mszC o]
with F* =F.. The coefficientsF,, can be computed in w(x):m;w Anel™". (14)
terms of A.;,A.,,... from the usual Fourier-Bessel ex-

pansions, and therefore provide coupling among the modeghis is still a traveling wave but has antimes longer pe-
By substituting Eqs(5), (7), and(8) into Eq. (1), we obtain  riod. In a similar manner to the above discussion, one may

a coupled system of modal equations. expect resonances when

(S +imlw)Ay+F =0, 9) 0= ,—(Mw/n)?, ie, o=Nwy,/m, (15)
where where

Om= 0’ — (Mw)? (10) Omn=2A;sin(2maf/n). (16)
and The resonances wittm=1 andn=1,2,3 have been observed

by Caputoet al?®

wm=2A ;sin(maf). (11

The indexm=1,2, ... forEgs.(9)—(11). In addition, the bal-
ance of the dc terms in Eql) results in

lp/l.=Tw+F,. (12)

B. Amplitudes at resonances

There was no need to analyze the coupling teFpsn
The first term on the right hand side is proportionaktoand  the previous section to determine the resonant voltages, but it
hence to the dc voltage. This term describes the ohmic line ibecomes necessary when the ac componptare wanted.
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These mode amplitudes are important information for posand
sible oscillator applications because one can then estimate
the power available from the device. (JO(aZ)/aZ)ZZ(5§+4F2‘”2)/‘Ji(a1)’
One way to calculate the amplitudes is to linearize the tan 0,— 6,)=— 2T ! 5,. (23
coupled modal Eq99) with respect toA,,. One would ob- ) . .
tain a linear algebraic system with coupling between neigh- !t iS convenient to think ofw as the control parameter
boring modes only. We have tried this approach, but thénd determine,, a,, 6, and 6,. The arguments of tangent
estimated magnitudes became too large to justify the linea@"® defined between 0 and As « increases from 05; and
ization, and they did not agree well with the numerically 92 decréase monotonically, and changes sign from positive
obtained mode amplitudes. to negative at the resonance frequencies. Tﬁysiecre_as_es
Therefore, we have used another approximation that caffom 7 t0 0, with the crossovef,= /2 at w=w;. Simi-
cope with larger amplitudes. Since analysis of the modal@™y: (62— 61) decreases fromr to 0, and crosses/2 at
equations in general appears formidable, we focus only ofp = @2/2. ) .
the stepsn=1 and 2, and make several approximations. ~_ 1he amplitude equations ¢22) and(23) are more com-
First, as we see in the spectra in Figa®), A; and pI|cat§d. It follows from Eq.(23) t.hat a;=0 whena;=0.
higher modes have much smaller magnitudes on these twhhat is, the second mode is excited only in the presence of

steps, so they will be neglected. Then the first mode. On the other hand, the first mode can be
_ . excited alone sinca; >0 in Eq.(22) whena,=0. The feed-
d(x)=x+ (A7 + c.c)+ (A" + c.c) back from the second mode throud$(a,) in Eq. (22) is not

essential when consideriray.
a7 . . .
To extract more information we make a further approxi-
where mation. We first linearize the Bessel functions on the right
A= — (i/2)a e m. (18) hand sides, i.g]l(al)%al/Z andJy(a,)~1. (Consequently,
F, becomes independent #&f,, and the feedback from the
The harmonic balancenethod, which is commonly used for second mode is neglected. Then, Eg2) reduces to the
approximating a finite amplitude solution, would neglégt  equations obtained through the method of harmonic
as well. Thus, the ansat27) can be thought of as an exten- balance’)
sion of the method to a multiharmonic case. Including two  On the left hand sides of Eq&2) and(23), the function
harmonics, however, introduces coupling terms betweed,(a)/a is monotonically decreasing from to zero asa
them, and makes the problem substantially more difficult. Byincreases from 0 to the first zero @§, which is a* ~2.4.
the Fourier-Bessel expansion, the coupling is expressed asThus, for anyw, a can be found within 0 and*. Approxi-
w mating the function crudely byy(a)/a~1/a would make
Fo= 2 J_(2n+ 1)(a1)In(@)SIN B~ (2n+1) 6] the range ofa unbounded. This is not desirable near the
n=—c resonances. We could include the next term from the expan-
(19 sion of Jy, but this would make the following algebra more
and complicated. Alternatively, we replace the function by an-
other one which has the same asymptotic behavia-a®
Fo=—(i2)3 I (2ns 1)(81) Iy (@) €l(N02+ (M=20-1)0) and a bounded domain fer. We use
n

=X+ a;Sin(x+ 0;) +a,sin(2x+ 6,),

[Jo(a)/a]?~1/a®—1/4. (24)
+(i12)>, I m(2ns 1(@1) In(a2) This has a slightly different saturation amplitudeadt=2
n but overall the approximation is good; the erroranntro-
% @ i(nf—(m+2n+1)6;) (20 duced by this replacement is less than 5%der0.7 and at
most 20% wherm saturates. In return for the error introduced
for m#0, andJ,, are Bessel functions. at this stage, we obtain simple expressions for the amplitudes
To make analytical progress we simplify the coupling by as
taking only the most dominant term$or small a’s) and 2 _12 o _12
neglecting all the others. This results in a,=(b1+1/4) and ap=(by+1/4)~", (25
Fi=—(i/2)3o(a;)3o(ay), o1 where
F o= — (i12)dy(ay) do(ay)eif1, bi=2+T2w? and b3=4(65+4I%w?)/aZ. (26)
The higher order Bessel functiods(a;), Ja(a,), ... and Once the phases and amplitudes of the modes are deter-

i ____ mined, the instantaneous voltage is obtained from the time
J1(82), J2(@,), - . ., areneglected, which can be justified in gerivative of Eq.(17). In our normalization,

the range, saya;|<2 and|a,|<1. We substitute them into

Eq. (9) for m=1.2 and obtain V/I.R,=T'w[1+aj;cogx+ ;) +2a,cog2x+ 6,)].

(27
(Jo(ar)/ay)?=(8i+I2w?)/I3(ay), Thus, the dc voltage and the ac amplitude of the mudee
tand; = —Tw/ 5, (22) Voc/lcRy=Tw and Vac/l.R,=TFoma,. (28)
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magnitude ofa,. Including terms involvingJ;(a,) in the
modal equations would be necessary to make a better esti-
mate in the region.
Generally, our assumption is violated whap saturates
in Eq. (25), or whenb? becomes small. On the Eck peak
bf%(ZFAJsin(wf))z, so the assumption breaks down for
\ ! very smalll’ and/orA ;. Similarly, a, exceeding unity indi-
> 0.2} \ ? cates that we need more coupling terms included from Eq.
- DE}DU 4° (9. On the m=2 step, a,<1 s fulfiled when
0 B 2021+ 202+ 4(w?— 02/4)?]>3/4. Again, small A,
002 04 06 081 and/orI" make it easier to violate the criterion. Thus, the
f validity of our approximations is limited to wheR A is
relatively large and resonances are not so strong.

C. Power at resonances

The calculation of the mode amplitudes provides a the-
oretical upper limit for the power available from the Joseph-
son oscillator at resonance. If we assume a matched load
condition, then the power dissipated in the load is just the
power dissipated in the matched resistance. Using the RSJ
model and assuming sinusoidal voltage oscillations, this cor-
responds toP=V§C/8Ra", where R, =R, /N is the array
resistance. The power available from madeas then

Pm N( Vac

IR, 8\IcRy

2 N
) =§(meam)2 (29

(b) with a,,, estimated in Eq(25). Therefore, the vertical axis of
Fig. 7 is also\/BPm/ngRn, and thef dependence of the
FIG. 7. Amplitudes of the first two ac voltage harmonics(@nthem=1  powers can be read directly from the figure. When biasing on
(Eck step andb) them=2 step vsf. The theory(25) is represented by 2 the Eck step, the largest power and the highest frequency are
solid (dashed line for the first(second harmonic. Filled circles and open . _ .
sguares show the amplitude of the first and second harmonics, respectivel9,btalned af =0.5. When the S)_/stem is biased on the Second
from simulations. The values of, andT' are the same as in Fig. 4. As Step, the largest power is obtained néar0.2, and the high-
expected, the amplitude at the second frequency is quite small an#e  est frequency is achieved nekr 0.25.
step(a), while the amplitudes of the first two harmonics are comparable on We take our experimental values,R,=0.93 mV and
them=2 step(b). R,=16.81) and the maximum amplitudes in Fig. 7
(Vac,1=0.69 (R, on the Eck step an¥l,. ,=0.3@ R, on the
second step This predicts a maximum of about 150 nW
from the first harmonic at the first resonance and 46 nW from
In Fig. 7, we compare the amplitude estimate with simu-the second harmonic at the second resonance. These numbers
lations. On the first two steps, the peak ac voltage amplitudeare much smaller than previous estimateand, according
for the first two Fourier modes are obtained from simula-to measurements;?® are probably more realistic.
tions, shown as data points. The estimates of the resonance Our simulation and analysis show that multiple Fourier
frequenciesw= w; and w,/2 from Eq. (13) are used. The modes are excited on the new steps 1. For possible ap-
theoretical curves show a reasonable agreement with the dapéications as oscillators, this is not desirable since the ac
on the Eck step. On the second step the comparison is worsgower is therefore distributed among the modes, instead of
but the overall magnitude anfl dependence are estimated being concentrated in one mode, as at the Eck step. Usually
fairly, considering the several approximations made duringn such a case one could simply increase the drive, to in-
the derivation. crease the output at the desired frequency. However, in this
The maximum ac voltage oscillation of the first mode onsystem the driving current is limited because, if it is in-
the Eck step is achieved &t=0.5. The maximum of the creased beyond the top of the step, the resonance becomes
second mode on the second step happens near the lower critinstable. Furthermore, since the maximum output power is
cal frustration ~0.2). The vertical axes in Fig. 7 are shown small for a single row, methods are needed to combine
in terms of ac voltages. Converted back to the amplitudespower from multiple rows while preserving the frequency
a;<1.75 anda,< 0.4 on the Eck step for 02f<0.8. This  content of the resonance.
is thought to be within the validity of the assumptions. On Both discrete rows of underdamped Josephson junctions
the second ste@m;<<1.8 for 0.15<f<0.45, buta, exceeds and continuous long junctions operating at the Eck step have
unity whenf < 0.25. The bending of the theoretical curves in already been proposed as high frequency oscillaft75Al-
(b) when f<0.25 may be attributed to the large predictedthough no single experiment has directly compared the two
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