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New resonance steps are found in the experimental current-voltage characteristics of long, discrete,
one-dimensional Josephson junction arrays with open boundaries and in an external magnetic field.
The junctions are underdamped, connected in parallel, and dc biased. Numerical simulations based
on the discrete sine-Gordon model are carried out, and show that the solutions on the steps are
periodic trains of fluxons, phase locked by a finite amplitude radiation. Power spectra of the voltages
consist of a small number of harmonic peaks, which may be exploited for possible oscillator
applications. The steps form a family that can be numbered by the harmonic content of the radiation,
the first member corresponding to the Eck step. Discreteness of the arrays is shown to be essential
for appearance of the higher order steps. We use a multimode extension of the harmonic balance
analysis, and estimate the resonance frequencies, the ac voltage amplitudes, and the theoretical limit
on the output power on the first two steps. ©1997 American Institute of Physics.
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I. INTRODUCTION

Josephson junction systems have a natural applicatio
millimeter- and submillimeter-wave oscillators. To facilita
their use, however, ongoing research must address se
issues. To produce oscillators with narrow linewidths a
high power, we must study the harmonic content and os
lation amplitudes of Josephson sources. Furthermore,
conditions under which many Josephson oscillators can
phase locked to produce higher output power continue
challenge researchers.

ac power has been measured from both continuous
Josephson junctions and discrete arrays of short junction
underdamped Josephson systems, the ac oscillation am
tudes are expected to be largest at certain resonant freq
cies. Much analytical work has been done to predict the
quency of these resonances. The success of these ana
can be assessed by studying the dc current-voltage (I –V)
characteristics. Steps appear in theI –V when increases o
the current bias over a certain range do not produce incre
in the dc voltage. Instead, the input power drives lar
amplitude ac oscillations. The frequency of these oscillati
is related to the dc voltage by the Josephson relat

a!Electronic mail: duwel@bardeen.mit.edu
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v52pV/Fo , whereFo is the flux quantum, while the spa
tial wave number is determined by the applied magne
field, k52p f , where f is the applied flux per unit cell nor
malized toFo . The oscillations can be approximated as t
normal modes to the linearized system. This approach
been used successfully to predict resonance frequencie
steps in theI –V characteristics of many different geometri
of Josephson systems. The dependence of the step volta
applied magnetic field can be included, thus giving a disp
sion relation for the associated oscillations. In the discr
case, the dispersion relation is nonlinear, and higher m
waves are expected to produce distinct steps in theI –V.1,2

One of the limitations of these linear analyses is that
predicted oscillations are necessarily single harmonic, si
the normal modes of the linearized Josephson system
simply Fourier modes. In addition, the absence of a driv
force in the linearized system precludes any calculation
the oscillation amplitudes.

In order to predict oscillation amplitudes and the dist
bution of power among excited modes, the nonlinearity
the system must be more carefully treated. Perturba
techniques3,4 clarify the role of the nonlinearity in driving the
resonance and have been used to predict step voltage
Josephson systems. Combined with an appropriate an
they also provide expressions for the oscillati
466161/8/$10.00 © 1997 American Institute of Physics
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amplitude.5–7 However, analytic expressions for the ac a
plitudes so far include only the first harmonic and a
implicit.5

In this article we use experiments, simulations, and n
linear analysis to investigate the properties of discrete, pla
arrays of Josephson junctions connected in parallel. Both
periments and simulations yield several resonant steps in
I –V. Simulations indicate that on these steps, a trave
wave pattern dominates the oscillations of junctions in
array. In contrast to the linear picture, these resonances
respond to excitations of more than one mode, though
harmonic content is still limited. Similar states have alrea
been reported in discrete rings,8 indicating that boundary
conditions play a minor role. In inductively coupled arra
with open ends, the second harmonic resonance was
observed experimentally.9 We use a two-mode extension o
the harmonic balance method to predict the resonant
quencies as well as the mode amplitudes at resonance.
formulas are analytic and include the dependence on m
netic field. With a matched load condition, a theoretical u
per limit on the available output power of the underdamp
Josephson oscillator is calculated.

II. MEASUREMENTS OF ARRAYS

We have measured single-row arrays ofN554 junctions
connected in parallel. Figure 1 shows a schematic of
device. A bias currentI b is applied at each upper node of th
array and extracted from each bottom node as shown.
use resistors to distribute the bias current as evenly as
sible. The voltage across the array is measured at an e
The array is placed above a superconducting ground pl
and a separate control line~not shown! is used to apply a
magnetic field. We will discuss the applied field in terms
the frustration, f ~the flux applied to a single loop of th
array, normalized to the flux quantum!. Because the system
is discrete, we expect its properties to be periodic inf with
period f 51.10 In this experiment, the applied flux is propo
tional to the control current.

Samples were fabricated using a Nb trilayer proces11

The junctions are 333mm2 with a critical current density of
j c(T50)51270A/cm2. Device parameters have been det
mined using the diagnostic procedures described by van
Zantet al.12 For our samples at 7.2 K, the normal-state res
tanceRn516.6V, the self-inductance of a loopLs56.4pH,
the nearest-neighbor inductive couplingMh50.11Ls , the
junction capacitanceC5340fF, and the Josephson indu

FIG. 1. Schematic of an open-ended parallel array. A uniform currentI b is
applied at each of the upper nodes and extracted at the lower nodes.
4662 J. Appl. Phys., Vol. 82, No. 9, 1 November 1997
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tanceLJ5Fo /(2pI c)55.9pH. We use the normal-state re
sistance to calculate the Stewart-McCumber parame
bc516. The sub-gap resistance is not as well defined at th
high temperatures but approaches the value ofRn . For the
discreteness parameter, we calculateLJ

25LJ /Ls50.92.
Figure 2 shows the voltage across an array when

current is uniformly injected. ThreeI –V curves are pre-
sented, forf 50.2, 0.3, and 0.5. The most prominent featu
is the sharp Eck step, which is the steepest part of theI –V,
just before the switch to the gap voltage~not shown!. We
label this step ‘‘m51’’ for the reason given in the next sec
tion. In the regime wherebc is small~overdamped! or LJ is
large ~less discrete!, this is the only step observed. For o
underdamped and discrete samples, however, additi
steps appear below the Eck voltage. We index these s
with m52,3, etc. In this article we are mostly concern
with the Eck stepm51 and, among the new steps, the cle
est one withm52. The study of the second step sheds lig
on the finer steps withm.2.

The voltage locations of the peaks experimentally va
with f , as seen in Fig. 2. More systematically, we show
dependence of the first two steps in Fig. 3. The Eck p
voltage is found to be periodic inf with period f 51 and to
be approximately symmetric with respect tof 50.5. This is
consistent with previous observations.10 At f 50.5, the Eck
step reaches its highest voltage value. For a smallerf , there
is a threshold frustration, below which the Eck step does
appear. This cutofff c1, known as the lower critical field or
frustration, is the minimum applied flux density for vortice
to enter an array.10 The value is quite large for our system
f c1'2/(p2LJ)50.2. The voltage location of the second st
shows roughly the samef periodicity and symmetry as th
Eck step. This second step, however, achieves the maxim
voltage nearf 50.25, and it disappears nearf 50.5 and for
approximatelyf , f c1.

The Eck (m51) steps are ubiquitous in one-dimension
parallel arrays as well as in continuous long junctions.
contrast, the other steps (m.1) do not appear in long con
tinuous junctions, but do appear in discrete arrays whenLJ

FIG. 2. Current vs voltage of a 54-junction array on a ground plane at th
values off 50.2,0.3, and 0.5. The temperature is 7.2 K so thatI cRn50.93
mV. The three steps indicated by the arrows are labeled bym values corre-
sponding to the number of dominant harmonics in the mode.
Duwel et al.
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is small. In our arrays, we findLJ must be less than unity fo
the m52 step to appear. Similar steps have been obse
also in highly discrete circular arrays8 and open-ended array
consisting of two rows that are inductively coupled.5

In open-ended arrays with a smallerN, Fiske steps13

may be observed in a similar part of theI –V below the Eck
voltage. We emphasize, however, that they are qualitativ
different. Fiske resonances can be described as stan
waves ~cavity modes! resulting from boundary reflections
The wavelength of the modes is restricted by the bound
geometry and, consequently, the resonance voltage loca
do not depend strongly onf . At a certain value off , only
even or only odd modes are excited. AsN becomes large, for
a given value of damping, these Fiske resonances disap
due to damping of the edge reflections. None of these
tures apply for the Eck step as well as them.1 steps, which
are tunable inf . Thus, the new steps are expected to belo
to the same family as the Eck step.

III. SIMULATIONS

The governing equations which model our arrays are
rived by applying Kirchhoff’s current laws and using th
resistively shunted junction~RSJ! model for the current
through a single junction. We normalize the current toI c ,
the voltage toI cRn , and time toALJC ~inverse plasma fre-
quency!. The equations are given in terms of the gaug
invariant phase differences across the junctions,f j , where
j 51, . . . ,N indexes the junction’s position. For simplicit
we neglect all the cell inductances except the s
inductance, which results in the damped, driven, discr
sine-Gordon model:

f̈ j1Gḟ j1sinf j5I b /I c1LJ
2~f j 1122f j1f j 21! ~1!

for j 51, . . . ,N and G5bc
21/2. Our numerical code can in

clude longer range inductances as necessary, up to the
inductance matrix.14 However, our analysis in the next se
tion uses mainly Eq.~1!. Simulating the same equations a
lows us to make a direct comparison with our analysis. T
simpler system not only illuminates the essential mechan

FIG. 3. Step voltages of the 54-junction array vs the frustration,f , for the
modesm51 andm52. The dashed curves are plots of Eq.~13!.
J. Appl. Phys., Vol. 82, No. 9, 1 November 1997
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responsible for the observed steps but also reproduces
measurements reasonably well, as we will show in this s
tion.

With only self-inductance, the boundary conditions a
simply

f0~ t !5f1~ t !22p f and fN11~ t !5fN~ t !12p f
~2!

for all t, where artificial junctionsf0 and fN11 are intro-
duced at the end points so that Eq.~1! is valid at j 51 andN
as well.15 The fourth-order Runge-Kutta scheme with a tim
stepDt51 is used for integrating the system. The instan
neous voltage at junctionj is simply proportional to the rate
of the change off j , and is given in our normalization by

V/I cRn5Gdf j /dt. ~3!

With Eqs. ~1–3!, current-voltage characteristics are n
merically obtained at differentf values using the paramete
LJ and G from our experiments. Figure 4~a! shows the re-
sults for f 50.3. The curve reproduces the measured one
Fig. 2 well, and at least three steps~indexed bym) are clear.
~There is also a small step just below them51 step which
we think arises from a different mechanism.! In a manner
similar to Fig. 3, thef dependence of the step voltage loc

FIG. 4. ~a! Simulated current-voltage characteristic for a 54-junction ar
at f 50.3. The three most prominent steps are marked.~b! Voltages corre-
sponding to the top of the steps show the tunability of the first two st
with magnetic field. The parameters are the experimental values:bc516
(G50.25) andLJ

250.92.
4663Duwel et al.
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tions is shown in Fig. 4~b!. There are slight differences, bu
the main features and voltage values are represented w

Simulations allow us to study the solutions in detail. W
are especially interested in the system dynamics when bi
on top of a step. In Figs. 5~a!–~c! the phase of the junction
j 527 ~located in the middle of the array! on them51,2,3
step, respectively, is shown as a function of time. The ju
tion appears to be in a periodic motion. Its phase increa
rapidly when a vortex~kink! passes by, and it oscillates fo
the period between passing vortices. In a mechanical an
of a junction as an underdamped pendulum,16 a sudden over-
turn of the pendulum is followed by an overshoot, and
pendulum ‘‘rings’’ several times until the next vortex pass
by.

It appears in Fig. 5 that the solution on the stepm cor-
responds tom such ringings. This can be quantified by stud
ing the harmonic content of the voltages@Eq. ~3!#. Fourier
spectra of the voltages are shown in Figs. 6~a!–~c!, respec-
tively. On the stepm, the first m harmonics are dominant
and the higher harmonics have rapidly decaying magnitu
Despite the presence of other harmonics, the steps are
dexed by the ringing frequency,m.

Similar plots for the other junctions inside the array a
pear identical tof27, except for a certain shift in the tim
axis. This suggests that the solutions are well approxima
by traveling waves. Near both ends of the array, reflecti
from the ends change this picture. The boundary effe
however, decay within 4–5 junctions from the end, and
pear to play only a minor role in our long arrays.

FIG. 5. Time evolution of the phase of a junctionj 527 in the center of an
array, biased on the~a! m51, ~b! m52, and~3! m53 steps, respectively
Note the increased frequency content as the mode number increases.

FIG. 6. Fourier spectra of the voltage corresponding to Figs. 5~a!–~c!, with
~a! step m51, ~b! step m52, and~c! step m53. Voltages are proportional to
the time derivative of the phase in Fig. 5. The average slope of the p
plots corresponds to the dc voltage and is determined by the fundam
harmonic. The dc voltage was subtracted before computing the Fourier s
tra. Note that onlym harmonics are dominant for themth step.
4664 J. Appl. Phys., Vol. 82, No. 9, 1 November 1997
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Such traveling wave solutions, consisting of a vortex a
ringing, have been found in circular arrays with the period
boundary conditions.1,15,17 In these systems, a vortex i
trapped in a ring and, as it circulates, it creates an oscilla
wake, which phase locks back to the vortex. It is not surp
ing that a nearly identical situation may arise in a linear ar
with open boundaries, if the array is sufficiently long. Inste
of a single circulating vortex, a vortex lattice propagat
through the array. A junction is swept periodically by a vo
tex in both cases. There is, however, one major differe
between the two geometries. The magnetic field in the ar
~which controls the vortex spacing! can be continuously
tuned in the linear geometry while it is restricted to multipl
of F0 in a circular array due to the flux quantization.

IV. ANALYSIS

In this section we seek a more analytical description
the system, and estimate dc voltages at each step and
amplitudes of the ac voltage components. The simulation
the previous section suggest that finding traveling wave
lutions to the governing Eq.~1! is the key to the estimates
but this task is not simple in practice.

The Eq. ~1! may be viewed as a variation, in two re
spects, from theintegrable sine-Gordon partial differentia
equation,

f tt1sinf5fxx ~4!

which possesses traveling kink solutions as exact solutio
First, Eq.~1! is no longer a conservative equation, as it i

cludes the external drive~bias currentI b) and the loss (Gf j̇ )
terms. The added terms also break the integrability and e
solutions are no longer known. A perturbation approach18 in
the conservative limit(I b ,G→0) has been developed to ap
proximate a kink solution.

Second, the spatial derivative in Eq.~4! is discretized in
Eq. ~1!. In general, nonlinear wave equations discretized
lattices may exhibit qualitatively different solutions from
their continuous counterparts, and study of su
discreteness-induced effects is an active current topic in
own right.19 For sine-Gordon systems, in particular, Eq.~1!
was studied by Refs. 19, 20, and 21 without a loss term o
drive, and it was found that propagation of a kink introduc
a background radiation which greatly influences the spee
the kink. As far as we are aware, however, there has bee
attempt to estimate the amplitudes of the induced radiat
especially in the driven case.

Strunz and Elmer17 recently transformed Eq.~1! into a
system of coupled modal equations and pointed out that
superharmonic resonance leads to creation of the radi
waves. They expanded a traveling wave form into Four
modes, which may not be the best expansion basis but
convenient one. Since our Fourier spectrum in Fig. 6 sho
only a small number of peaks, we may truncate most mo
and still obtain reasonable predictions. With this goal
mind, we review the analysis of Ref. 17 in Sec. IV A. Th
coupling terms among modes are truncated and analyze

se
tal
ec-
Duwel et al.
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Sec. IV B, and we estimate the ac voltage amplitudes on
steps. The available power from the array is then evalua
in Sec. IV C.

A. Resonance mechanism and voltages

We look for traveling wave solutions of the discre
sine-Gordon Eq.~1! of the form

f j~ t !5f~x!5x1c~x!, ~5!

where

x5vt12p f j ~6!

is the moving coordinate with the wave, an
c(x12p)5c(x). The fundamental frequencyv is propor-
tional to the dc voltage through the Josephson voltage-ph
relation~3! while the spatial wave number is imposed by t
external field. If the modulation were absent (c[0), then
the boundary conditions~2! would be satisfied exactly. Sinc
c is not vanishing, they are satisfied only on average,
there should be a correction to Eq.~5!. We neglect this
boundary effect and will show that the simplification st
leads to good estimates of the measurements and sim
tions. ~In a circular array Eq.~2! is replaced by the periodic
boundary conditions:f j 1N(t)5f j (t)12pM whereM is an
integer.15 There can be exact solutions of the form@Eqs.~5!
and ~6!# with f 5M /N.!

The periodic functionc can be expanded into Fourie
modes

c~x!5 (
m52`

`

Ameimx ~7!

with A2m* 5Am . We setA050, without loss of generality, by
shifting the origin of time. The phasef is an increasing
function of x, but the nonlinear term sinf is 2p - periodic
and can be expanded as

sinf~x!5 (
m52`

`

Fmeimx ~8!

with F2m* 5Fm . The coefficientsFm can be computed in
terms of A61 ,A62 , . . . from the usual Fourier-Bessel ex
pansions, and therefore provide coupling among the mo
By substituting Eqs.~5!, ~7!, and~8! into Eq. ~1!, we obtain
a coupled system of modal equations.

~dm1 imGv!Am1Fm50, ~9!

where

dm5vm
2 2~mv!2 ~10!

and

vm52LJsin~mp f !. ~11!

The indexm51,2, . . . forEqs.~9!–~11!. In addition, the bal-
ance of the dc terms in Eq.~1! results in

I b /I c5Gv1F0 . ~12!

The first term on the right hand side is proportional tov, and
hence to the dc voltage. This term describes the ohmic lin
J. Appl. Phys., Vol. 82, No. 9, 1 November 1997
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the I –V plane. The second term is also a function ofv
through theAm’s, and describes the deviation of theI –V
curve from the ohmic the line.

The superharmonic resonance22 may occur in the alge-
braic system~9,12! and lead to the creation of resonant ste
in the I –V curve. For smallG, the magnitude ofAm would
generically become large neardm50, that is, near

v5vm /m, m51,2, . . . . ~13!

ThenF0 also becomes large, and theI –V deviates substan
tially from the ohmic line near these frequencies~or corre-
sponding voltages!. This argument neglects the dependen
of the coupling termsFm on the complex amplitudesAm , but
explains our measurements quite well. We plot Eq.~13! for
m51,2 as dashed curves in Figs. 3 and 4~b!. The agreement
is good without a fitting parameter.

The right hand side of Eq.~13! is the phase velocity of
the mth mode on the discrete lattice. The left hand side c
be viewed as the vortex velocity. Then, the relation can
viewed as the phase-locking condition of the vortex veloc
and the phase velocity of themth mode.1,15 In the absence of
the coupling termsFm , a resonance occurs when the vort
lattice moves at the same velocity as one of the modes.
note that these resonance frequenciesv are distinct for dif-
ferentm because of the sinusoidal dependence of the dis
sion relation~11! on m. If the second order difference in Eq
~1! were replaced by the second spatial derivative as in
~4!, the dispersion relation would depend linearly onm, and
the phase velocities of all the modes would be identic
Consequently, there would be only one vortex velocity th
can excite modes, and we would observe only one resona
voltage. This explains why only the Eck step~among this
type of step! is observed in a long continuous junction.
this sense, our observation of them.1 steps is due to the
discreteness of the system.

We also note that, in some parameter regime, the re
nating modes may be sub harmonics of the fundamental
quency. Sub-harmonic resonances of ordern can be sought
by generalizing Eq.~7! to

c~x!5 (
m52`

`

Ameimx/n. ~14!

This is still a traveling wave but has ann times longer pe-
riod. In a similar manner to the above discussion, one m
expect resonances when

05vm,n
2 2~mv/n!2, i.e., v5nvm,n /m, ~15!

where

vm,n52LJsin~2mp f /n!. ~16!

The resonances withm51 andn51,2,3 have been observe
by Caputoet al.23

B. Amplitudes at resonances

There was no need to analyze the coupling termsFm in
the previous section to determine the resonant voltages, b
becomes necessary when the ac componentsAm are wanted.
4665Duwel et al.
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These mode amplitudes are important information for p
sible oscillator applications because one can then estim
the power available from the device.

One way to calculate the amplitudes is to linearize
coupled modal Eqs.~9! with respect toAm . One would ob-
tain a linear algebraic system with coupling between nei
boring modes only. We have tried this approach, but
estimated magnitudes became too large to justify the lin
ization, and they did not agree well with the numerica
obtained mode amplitudes.

Therefore, we have used another approximation that
cope with larger amplitudes. Since analysis of the mo
equations in general appears formidable, we focus only
the stepsm51 and 2, and make several approximations.

First, as we see in the spectra in Fig. 6~a,b!, A3 and
higher modes have much smaller magnitudes on these
steps, so they will be neglected. Then,

f~x!5x1~A1eix1 c.c.!1~A2e2ix1 c.c.!

5x1a1sin~x1u1!1a2sin~2x1u2!, ~17!

where

Am52~ i /2!ameium. ~18!

Theharmonic balancemethod, which is commonly used fo
approximating a finite amplitude solution, would neglectA2

as well. Thus, the ansatz~17! can be thought of as an exten
sion of the method to a multiharmonic case. Including t
harmonics, however, introduces coupling terms betw
them, and makes the problem substantially more difficult.
the Fourier-Bessel expansion, the coupling is expressed

F05 (
n52`

`

J2~2n11!~a1!Jn~a2!sin@nu22~2n11!u1#

~19!

and

Fm52~ i /2!(
n

Jm2~2n11!~a1!Jn~a2!ei ~nu21~m22n21!u1!

1~ i /2!(
n

J2m2~2n11!(a1)Jn~a2!

3e2 i ~nu22~m12n11!u1! ~20!

for mÞ0, andJm are Bessel functions.
To make analytical progress we simplify the coupling

taking only the most dominant terms~for small a’s! and
neglecting all the others. This results in

F152~ i /2!J0~a1!J0~a2!,
~21!

F252~ i /2!J1~a1!J0~a2!eiu1.

The higher order Bessel functionsJ2(a1), J3(a1), . . . and

J1(a2), J2(a2), . . . , areneglected, which can be justified i

the range, say,ua1u,2 andua2u,1. We substitute them into
Eq. ~9! for m51,2 and obtain

~J0~a1!/a1!25~d1
21G2v2!/J0

2~a2!,

tanu152Gv/d1 ~22!
4666 J. Appl. Phys., Vol. 82, No. 9, 1 November 1997
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~J0~a2!/a2!25~d2
214G2v2!/J1

2~a1!,

tan~u22u1!522Gv/d2 . ~23!

It is convenient to think ofv as the control paramete
and determinea1, a2, u1 andu2. The arguments of tangen
are defined between 0 andp. As v increases from 0,d1 and
d2 decrease monotonically, and changes sign from posi
to negative at the resonance frequencies. Thus,u1 decreases
from p to 0, with the crossoveru15p/2 at v5v1. Simi-
larly, (u22u1) decreases fromp to 0, and crossesp/2 at
v5v2/2.

The amplitude equations of~22! and~23! are more com-
plicated. It follows from Eq.~23! that a250 whena150.
That is, the second mode is excited only in the presenc
the first mode. On the other hand, the first mode can
excited alone sincea1.0 in Eq.~22! whena250. The feed-
back from the second mode throughJ0(a2) in Eq. ~22! is not
essential when consideringa1.

To extract more information we make a further appro
mation. We first linearize the Bessel functions on the rig
hand sides, i.e.J1(a1)'a1/2 andJ0(a2)'1. ~Consequently,
F1 becomes independent ofA2, and the feedback from the
second mode is neglected. Then, Eq.~22! reduces to the
equations obtained through the method of harmo
balance.5!

On the left hand sides of Eqs.~22! and~23!, the function
J0(a)/a is monotonically decreasing from̀ to zero asa
increases from 0 to the first zero ofJ0, which is a* '2.4.
Thus, for anyv, a can be found within 0 anda* . Approxi-
mating the function crudely byJ0(a)/a'1/a would make
the range ofa unbounded. This is not desirable near t
resonances. We could include the next term from the exp
sion of J0, but this would make the following algebra mor
complicated. Alternatively, we replace the function by a
other one which has the same asymptotic behavior asa→0
and a bounded domain fora. We use

@J0~a!/a#2'1/a221/4. ~24!

This has a slightly different saturation amplitude ata* 52
but overall the approximation is good; the error ina intro-
duced by this replacement is less than 5% fora,0.7 and at
most 20% whena saturates. In return for the error introduce
at this stage, we obtain simple expressions for the amplitu
as

a15~b1
211/4!21/2 and a25~b2

211/4!21/2, ~25!

where

b1
25d1

21G2v2 and b2
254~d2

214G2v2!/a1
2 . ~26!

Once the phases and amplitudes of the modes are d
mined, the instantaneous voltage is obtained from the t
derivative of Eq.~17!. In our normalization,

V/I cRn5Gv@11a1cos~x1u1!12a2cos~2x1u2!#.
~27!

Thus, the dc voltage and the ac amplitude of the modem are

VDC/I cRn5Gv and VAC /I cRn5Gvmam . ~28!
Duwel et al.
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In Fig. 7, we compare the amplitude estimate with sim
lations. On the first two steps, the peak ac voltage amplitu
for the first two Fourier modes are obtained from simu
tions, shown as data points. The estimates of the reson
frequenciesv5v1 and v2/2 from Eq. ~13! are used. The
theoretical curves show a reasonable agreement with the
on the Eck step. On the second step the comparison is w
but the overall magnitude andf dependence are estimate
fairly, considering the several approximations made dur
the derivation.

The maximum ac voltage oscillation of the first mode
the Eck step is achieved atf 50.5. The maximum of the
second mode on the second step happens near the lower
cal frustration (f '0.2). The vertical axes in Fig. 7 are show
in terms of ac voltages. Converted back to the amplitud
a1,1.75 anda2,0.4 on the Eck step for 0.2, f ,0.8. This
is thought to be within the validity of the assumptions. O
the second step,a1,1.8 for 0.15, f ,0.45, buta2 exceeds
unity whenf ,0.25. The bending of the theoretical curves
~b! when f ,0.25 may be attributed to the large predict

FIG. 7. Amplitudes of the first two ac voltage harmonics on~a! the m51
~Eck! step and~b! the m52 step vsf . The theory~25! is represented by a
solid ~dashed! line for the first~second! harmonic. Filled circles and open
squares show the amplitude of the first and second harmonics, respect
from simulations. The values ofLJ and G are the same as in Fig. 4. A
expected, the amplitude at the second frequency is quite small on them51
step~a!, while the amplitudes of the first two harmonics are comparable
the m52 step~b!.
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magnitude ofa2. Including terms involvingJ1(a2) in the
modal equations would be necessary to make a better
mate in the region.

Generally, our assumption is violated whena1 saturates
in Eq. ~25!, or whenb1

2 becomes small. On the Eck pea
b1

2'(2GLJsin(pf))2, so the assumption breaks down f
very smallG and/orLJ . Similarly, a2 exceeding unity indi-
cates that we need more coupling terms included from
~9!. On the m52 step, a2,1 is fulfilled when
G2v2

2@11G2v2
214(v1

22v2
2/4)2#.3/4. Again, small LJ

and/or G make it easier to violate the criterion. Thus, th
validity of our approximations is limited to whenGLJ is
relatively large and resonances are not so strong.

C. Power at resonances

The calculation of the mode amplitudes provides a t
oretical upper limit for the power available from the Josep
son oscillator at resonance. If we assume a matched
condition, then the power dissipated in the load is just
power dissipated in the matched resistance. Using the
model and assuming sinusoidal voltage oscillations, this c
responds toP5Vac

2 /8Rarr, where Rarr5Rn /N is the array
resistance. The power available from modem is then

Pm

I c
2Rn

5
N

8 S Vac

I cRn
D 2

5
N

8
~Gvmam!2 ~29!

with am estimated in Eq.~25!. Therefore, the vertical axis o
Fig. 7 is alsoA8Pm /NIc

2Rn, and thef dependence of the
powers can be read directly from the figure. When biasing
the Eck step, the largest power and the highest frequency
obtained atf 50.5. When the system is biased on the seco
step, the largest power is obtained nearf 50.2, and the high-
est frequency is achieved nearf 50.25.

We take our experimental values (I cRn50.93 mV and
Rn516.6V) and the maximum amplitudes in Fig.
(Vac,150.65I cRn on the Eck step andVac,250.36I cRn on the
second step!. This predicts a maximum of about 150 nW
from the first harmonic at the first resonance and 46 nW fr
the second harmonic at the second resonance. These num
are much smaller than previous estimates,24 and, according
to measurements,25,26 are probably more realistic.

Our simulation and analysis show that multiple Four
modes are excited on the new stepsm.1. For possible ap-
plications as oscillators, this is not desirable since the
power is therefore distributed among the modes, instead
being concentrated in one mode, as at the Eck step. Usu
in such a case one could simply increase the drive, to
crease the output at the desired frequency. However, in
system the driving current is limited because, if it is i
creased beyond the top of the step, the resonance bec
unstable. Furthermore, since the maximum output powe
small for a single row, methods are needed to comb
power from multiple rows while preserving the frequen
content of the resonance.

Both discrete rows of underdamped Josephson junct
and continuous long junctions operating at the Eck step h
already been proposed as high frequency oscillators.10,27 Al-
though no single experiment has directly compared the

ly,

n
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systems, studies indicate that the output power levels
comparable, while the output impedance of the discrete
tem may be advantageously higher.10 In order to increase
power levels in either case, additional oscillators are
quired. Stacks of continuous long junctions have been fa
cated and measured,28–30 as well as the analogous indu
tively coupled discrete arrays.5,9 However, in both systems
the power is only increased if the oscillating elements
phase locked and in phase. The existence of in-phase as
as anti-phase states has been well established for both
crete and continuous systems, through numeric31

simulations,2,32 and experiments.5,33 Unfortunately, in both
cases the anti-phase pattern is preferred at the Eck ste5,33

and the output oscillations of adjacent elements almost c
pletely cancel. In addition, the difficulty~and necessity! of
fabricating identical oscillators in the case of continuo
stacks limits the possibility for improving this system.

On the other hand, the presence of higher harmonic re
nances in discrete systems may actually be an advantag
terms of power combining. As observed in Ref. 9, when
discrete system is biased on the stablem52 peak, the fun-
damental oscillations of the rows are anti phase~shifted by
p), but the second harmonics are still in phase. Thus,
output power from the second mode is enhanced. It is imp
tant to note that such modes do not exist in uniform conti
ous long junctions. So, although the power level of a sin
row biased in this state is lower than the oscillators m
tioned above, the potential for power combining in this st
is much greater. Simulations indicate that this in-phase re
nance for the second mode is stable for many coupled ro9

which is promising for oscillator applications.

V. SUMMARY

We have observed experimentally and through simu
tions new resonance steps in long one-dimensional Jos
son junction arrays in the underdamped and discrete reg
They emerge in theI –V characteristic below the Eck volt
age, and are tunable in the magnetic fieldf . We have shown
that the resonance mechanism can be explained by neg
ing the boundary effects and assuming a traveling wave
lution. Fourier components of the solution resonate to cre
a wave form which appears to consist of a kink and rad
tion, phase locked to each other. We have employed a t
mode extension of the harmonic balance method in orde
simplify the coupling of the modes. We have derived
analytic formula for not only the resonance voltages but a
the amplitudes of the modes. Finally, we used these resul
predict the power available from such Josephson oscilla
and discuss its dependence on the system parameters.
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