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Thermal activation and macroscopic quantum tunneling in current-biased discrete Josephson transmission
lines are studied theoretically. The degrees of freedom under consideration are the phases across the junctions
which are coupled to each other via the inductances of the system. The resistively shunted junctions that we
investigate constitute a system Mfinteracting degrees of freedom with an overdamped dynamics. We calcu-
late the decay rate within exponential accuracy as a function of temperature and current. Slightly below the
critical current, the decay from the metastable state occurs via a ufrigie®) saddle-point solution of the
Euclidean action describing the simultaneous decay of the phases in all the junctions. When the current is
reduced, a crossover to a regime takes place, where the decay occurselaatarsaddle-point solution and
the phases across the junctions leave the metastable state one after another. This leads to an increased decay
rate compared with the rigid case both in the thermal and the quantum regime. The rigid-to-elastic crossover
can be sharp or smooth analogous to first- or second-order phase transitions, respectively. The various regimes
are summarized in a current-temperature decay diagram.

[. INTRODUCTION to elastic decay is similar and both first-order and second-
order crossovers have been found in systems with two
The decay of systems in a metastable state has been iBOF."®
tensively studied in the last decadest high temperatures The DOF we study in this paper are macroscopic and
the decay is induced by thermal activation. Lowering thecoupled to their environment. At low temperatures, when
temperature, under well-defined conditions quantum fluctuamacroscopic quantum tunnelifylQT) occurs, the interac-
tions become important and a crossover from thermal activaion of the DOF with the environment leads to quantum
tion to quantum tunneling occufs® For systems with sev- dissipation:> Among the experiments that have been suc-
eral interacting macroscopic degrees of freed®@®F), the  cessfully interpreted in the framework of MQT with dissipa-
decay scenario is quite complex. For example, a crossovéion are the investigations of the decay of metastable states in
from rigid decay, where all DOF decay instantly, to elasticcurrent-biased Josephson junctidds’s and superconduct-
decay, where the DOF decay one after anStiferan take ing quantum interference devicé€8QUID’s).** The relevant
place in systems with two DOF in the therfhak well as in  collective coordinate in the case of the JJ is the phase differ-
the quantum decay regimlé. Recently, the rigid-to-elastic ence across the junction. The dc SQUID consists of two
crossover was investigated theoretically in systems With parallel connected JJ's and thus enables the study of the
DOF in the high-temperature limitin this work we study quantum dynamics of two coupled degrees of freedom, the
the various decay regimes that occur in these systems at lophases across the junctions. The natural generalizatidh to
temperatures, where quantum tunneling is relevant. degrees of freedom are parallel coupled one-dimensional
A system in a metastable state decays most probably vidosephson-junction arrays, also known as discrete Josephson

the lowest-lying saddle-point configuration of the Euclideantransmission lineéDJTL’s). The continuum limitN— oo cor-
action. A crossover in the decay rate occurs, if a new lowerresponds to a long JJ if the length of the junctias larger
lying saddle point appears upon tuning an external paranmthan the Josephson length;. The thermal decay of the
eter. It can be continuous or discontinuous. A continuous ophase in underdamped long JJRefs. 15—-1Y and over-
second-order crossover occurs when a saddle-point bifurcatlamped DJTL'YRef. 9 has been investigated recently. The
tion takes place. For example, at the crossover from thermajuantum tunneling in underdamped long JJ's has been ana-
to quantum decay, the static saddle point that determines thgzed in the limitl—c (Ref. 19 and in the rigid regimé
decay at high temperatures bifurcates into dynamic extrems| ., wherel .~ A ; is the critical length above which elastic
(instantong that have a lower Euclidean action. This causesdecay via boundary nucleation sets'{rTo date, the inter-
an enhancement of the escape datéor temperatureJ be-  esting casel=I. has not been treated in the quantum-
low the crossover temperaturg, (see Refs. 2 and)3In tunneling regime, neither in the overdamped nor in the un-
steepest-descent approximatidi(T) and its derivative derdamped case. Solving the problem is difficult since then
I'’(T) are continuous aT,, whereas the second derivative the saddle-point solutions of the action are inhomogeneous
I'"(T) diverges. In analogy to a classical phase transitionin time and space. Two reasons motivated us to stidly
Larkin and Ovchinnikov denoted it a second-orderharmonically coupled DOF trapped in a metastable state.
crossover. They pointed out that for some potential shapesFirst, our model can be used to describe the decay of the JJ
I''(T) can become discontinuous B} and the crossover is phases in a DJTL and in the continuum lint—c to rep-
then of first order. Transitions of this type were later inves-resent a long JJ. The second reason is the need to analyze the
tigated in more detail by Chudnovsiand studied in vari- so far undiscussed overdamped limit.
ous physical systems by othéfs:2The crossover from rigid Since the decay close to the rigid-to-elastic crossover is
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determined by the long-wavelength excitations of the sys- B. Euclidean action
tem, much insight can be gained from studying dc SQUID’s.
Experiments on dc SQUID'¢Refs. 18—2D showed that at

high currents the classical decay mainly proceeds via th

The Euclidean action of a systemNfidentical JJ's in the
gresence of a bias currehts

simultaneous activation of both phases across a common AT

saddle point in the potential-energy landscape. However, be- Sg= dt[K(¢)+V(e) +D(e)],

low a crossover current, it was found that this saddle point 0

splits and the phases decay one after andth®rsimilar ~ wheret is the imaginary timege=(¢o, . ..,on_1) repre-

phenomenon was proposed to occur in the quantum decayents the phase differences across the junctidiis the po-
process in underdampeand overdampédQUID's, known  tential energy, and models the dissipation. The “kinetic”
as the instanton splitting. In this case, the common saddlenergy containing the capacitanc@®f the JJ’s is given by
point of the Euclidean action bifurcates into two saddles of

lower action. In addition, a regime was found, where upon m -t o2
tuning temperature or current a first-order transition takes K(sD):E nZO ot |

place before the saddle-point bifurcation occurs.
The rigid-to-elastic crossover in DJTL’s is similar. Of wherem=C(®,/27)? corresponds to the “mass” of a fic-

course, instead of two DOF, one then Masoupled DOF titious particle andb,=hc/2e is the flux quantum. The po-

and the theory has to be generalized accordingly. A perturtential energy consists of two parts,

bative treatment to calculate the elastic instanton solutions of

the Euclidean action has been sketched in Refs. 7 and 8 for V(e)=U(p)+E(¢),

case of the dc SQUID. In the present publication, the pertur-

. : . ; here U(¢)=E;Z[1—cos(p,)—(I/Nly)¢,] represents the
bat h t ticall ked out and lied to. J ; n . oFn .
th(’j:al?ar;oi)(lzer?]moef ;Sn Sg\?eigja%gzdyljvj/]?r[ ?n ;) um ;gstggﬁalitatgited washboard potential of the driven JJ's that arises due to

With this procedure one is able to calculate the split- he rela'tﬂon_ bett\_/veen l_?urr.en'f; a?dt lgauge |tn}[/r?r|anth|rmases
instanton solution to arbitrary precision. We presguanti- across the junctions. Feiels the total current through the

tative results for the quantum decay rate of overdamped d ystem, | is th_e critical current of a single junction, and
SQUID’s, DJTL’s and long JJ’s close to the rigid-to-elastic 2= (®of2m)l ¢ is the Josephson energy. We concentrate on

crossover. We further construct the decay diagram of DJTL’éhe experimentally most interesting limit of currents close to
and long JJ's and compare it to the one of dc SQUID’s criticality, NI.—1<<l., where the tilted washboard potential

The paper is organized as follows: In Sec. Il we introduce®@n P& well approximated by its cubic expansion,

the Euclidean action to describe the quantum decay in g N1 1
DJTL'’s with dissipation. In Sec. lll, we discuss the saddle- U(g)=Uy+ =3 2 e(on—)2— =(on—9)3|.
point solutions of the action as a function of the temperature 2 70 " 3 "

and the driving current. An iterative perturbation procedure . -
to calculate these extrema close to a saddle-point bifurcatiof€® €= V2(1—1/Nl) is a small parameter that indicates
is presented in Sec. IV. This method is then applied to evaluthe distance from criticality=NI., ¢=m/2— € is the value
ate the split-instanton solutions in Sec. V. The various decagf the phase at the minimum of the potential, dglis an
regimes, which are summarized in a diagram and the corrgfrelevant constant that will be dropped in the following.
sponding relaxation rates are discussed in Sec. VI. FinallyTaking only the self-inductancdsof the loops into account

the conclusions are drawn in Sec. VII. and neglecting the mutual inductanééshe interaction en-
ergy between the loops is
Il. MODEL N_2
E; )
A. Decay rate E(@)=5> 2 (¢ni1—¢n)?
2,8 n=0

In[sin

T ,
7 ()

The probability per unit time for a metastable state to

decay at a finite temperatui is related to the imaginary Where B=LIZ/E; is the McCumber parameter. We model

part of the free energlf by I'=(2/%)ImF, as was shown by dissipation due to an Ohmic shunt resistafiReising the

Affleck.2 In the path-integral representation, the free energyCaldeira-Leggett approath

is given byF=—KTIn[¢D[qlexp(~SIq]/A)], whereSg is

the Euclidean action anglis a vector representing the DOF. Do) = n (MT de d¢

If the energy barrier that the system has to overcome in order (p)=- 21 ) a at ’

to leave the metastable state is large, the sum over paths is

dominated by the extremal trajectories and the latter can b&here n=1/R is the phenomenological friction coefficient.

treated in the semiclassical approximation. The decay ratt the following we will treat the overdamped limit and ne-

then reads glect the contribution of the capacitive terk(¢) to the
action. It is convenient to perform a transformation to dimen-

Ir=Ae ®", (1) sionless normal coordinates,

whereB is the Euclidean actioBg evaluated at the extremal N-1 ~k(n+1/2)

saddle-point trajectory and is a prefactor that can be ob- _~

tained by considering the fluctuations around the extremal en(t (P+26q0(7-)+2\/§€k§1 qk(T)COS{ N )

path. In this work, we will determine the expondt (2
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Note that theg, are functions of the dimensionless imaginary extremal solutions of the Euclidean action, the instantons
time r=2xTt/%— 7. We now define the dimensionless po- which lead to decay via quantum tunneling.
tential energy,

N_1 A. Saddle points of the potential energy

V(¢):E > quEJrN(q), 3 A trivial type of saddle-point solution can be readily con-

2 (=0 structed from physical arguments. Consider the case where
the attractive interaction between the particles is much larger
than the energy barrier. At high temperatures, the strongly
8 k coupled particles most probably are thermally activated over
,uk=—sin2(— +2 (4)  the barrier all at once and the chain basically behaves as a

Be 2N rigid rod. In this case the saddle point of the potentiak

are the eigenvalues oB{d,)) evaluated at the local mini- identical to the local maximum of the single DOF potential,

V =
(@ 2NE,é®

where

mum q=0. A{q) contains the cubic terms Po="--=¢n-1= €+ /2, which readsqp=1, qi=o=0 in

normal mode representation. If, on the other hand, the energy
2 N-1 N-1 barrier is of the order of the interaction strength or even

Ma)=— §q8—2q02 qﬁ— 3 E Q§(QZk—Q2(N—k)) larger, anothgr sadc_ile po_int of the pptential emerges. The_n
k=1 k=1 above a certain barrier height the chain preferably decays via

o N1 a kinked saddle-point solution with,-o#0 that we call

-== > ( O k= Oon ) elastic o
3 ey Ik Gmeek ™ Am k™ AN - mok Taking the second derivatives of Eq3) at g

=(1,0,...,0) weevaluate the eigenvalues of the curvature

with q,=0 for k>N—1. . - .
The action in terms of the dimensionless coordinatesmamx at the thermal rigid saddle point,

reads ) k
NS = T V(0rs) = Es,inz( m) -2. 7

Note that\®=2(1/JJ—1) becomes negative far>1, in-
) o dicating that another saddle appears. Biésticsolution has
where the Euclidean Lagrangian is a lower activation energy and hence becomes the most prob-
able configuration leading to escape from the metastable
state®

To determine the saddle points, one has to solve a system
of N coupled nonlinear equations. So far, elastic saddles have
Here g=N#E;e3/7nT>1 is the semiclassical paramet#&, been calculated exactly fod=2, Ref. 6 andN=3, Ref. 9.
= mnBTI2HE,sin?(w/2N) is the dimensionless temperature, Close to the crossove¥=1, theq,-, are small. Hence, for
and J=(Be)’/[2 sin(@/2N)]* is the dimensionless current. N>3, approximate solutions can be fouhdExpanding
Note thatJ=0 corresponds td=NI. around the rigid saddlej,=1+qo andq,=q for k>0, we
approximate the potential energy by

s dre, )

T—7

2

sin

LemV(q)— — &qfwd’éql
=VQq)——=— —In
. a 77\/3‘97' fﬂ-rT(?T'

lIl. EXTREMA OF THE EUCLIDEAN ACTION

N—1
1 1 ~n o~ o~
By applying the variational principle to the Euclidean ac- V=3+3 > NSG2-92(200+ \20,). (8)
tion, one finds the classical equations of motion in imaginary k=0
time

Solving V,V=0, one findsqi=\FA NS/ (AN +8NY),
qo=203/\5, 9,=+2q7/\5, andq,-,=0. Hence, the ei-
=0. (6) genvalues of the curvature matrix evaluated at the elastic
saddle fok# 1 areA;>~\;°, whereas\{°=2|\}°|. Inserting
ese results into E@8), one finds that the activation energy
reduced due to the elasticity. Close to the crossover, where

T—7

v Q)+ 0de,aq w{
——| d7—co
a4 77\/3 -7 I7 2

Their solutions are given by the extremal trajectories, of_th
which the saddle-point solutions are of special interest, sincl

they lead to the decay of the chain from its metastable statd =1+ it i given by

At high temperatures, quantum fluctuations play a minor role rsis 1S 2

and the solutions of the equation of motion are time indepen- - l_ INGIAS i _ 9)
dent, 9.q=0. Hence, they are given by the extrema of the 3 AN+ 2N \/j

potential,V,)(q) =0. However, below a crossover tempera-
ture 6y, quantum tunneling becomes relevant for the decay
process and the solutions of the equation of motion are a
function of the imaginary time. In the following paragraphs, In the following, we derive the crossover temperatdge

we first analyze the extrema of the potential, which deterSince the time-dependent quantum saddle-point solutions are
mine the decay in the thermal regime. Then we derive ameriodic in7 with a period 27, they can be represented by a
expression for the crossover temperatagerom thermal to  Fourier series. Near the crossover, the Fourier series can be
guantum tunneling and finally analyze the time-dependenivell approximated byq(7)~qis+ p cos), whereq;s is the

B. Crossover temperature from thermal to quantum decay
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thermal saddle point under consideratigigid or elasti¢ As for J>1, nonuniform saddle-point solutions of the
andp is a small correction term due to quantum fluctuations.action exist in the quantum regime in a certain parameter
Substitutingg(7) into the linearized equation of motion, range even fod<<1. If the action evaluated at this extremum
is lower thanBy,,, the nonuniform configuration is the most
op ) 7 probable one leading to decay from the metastable state via
[V (qrs) Ip cog 7) = w_\/jf dT'S'n(T')COf( ) quantum tunneling. Tuning the temperatérat a fixed bias

current, a nonuniform saddle-point solution can develop in
one finds an eigenvalue equation for the potential curvaturéwo different ways. One possibility is that a less probable
matrix, nonuniform configuration, which coexists with the rigid
saddle point above a critical temperatutg becomes the
26 lowest-lying saddle point of the Euclidean action beléy
[k (Grs) IP= — ﬁp' Then the most probable configuration abruptly changes from
uniform to nonuniform. Since the first derivative of the rate
The only negative eigenvalue of the curvature matrixd,l is discontinuous a¥,, the crossover is of first order.
[ 9 V(qs) ] evaluated at the saddle point of the potential isAnother scenario is encountered, if at a critical temperature
given by Ny, the curvature along the unstable direction. 8, the rigid saddle point bifurcates into new saddle points

Hence the crossover temperature is given by which have the lowest action. This crossover, known as in-
stanton splittind;® is of second order.

|)\o|\/3 A strategy to determine nonuniform saddle-point solu-

0T T 5 (10 tions for J<1 is to first search for a saddle-point splitting

and then to verify whether a first-order transition might have

For the rigid regime, whera;>= —2 we thus find occurred before the bifurcation has taken place. If a first-

order transition can be ruled out, the new bifurcated saddle

Bo(I<1)=11, (11)  points have the lowest action. In this case the bifurcation

causes a second-order crossover from a single to a split-
instanton regime.
Following this idea, we first identify the saddle-point bi-
furcation, calculate the split instantons and test whether or
(12) not a first-order transition has already occurred.

and in the elastic regime with\§>~N\g"—2NNS/(Ng
_)\725

=1)= ~l2-—
P(I=D)=I+(3 ﬁ)( 2 co(m/2N)

IV. ITERATIVE PERTURBATION SCHEME

C. Instantons In this section we present an iteration scheme to calculate

For 6< 6, quantum tunneling becomes relevant and thethe split-instanton solutions far<1. We start by expanding
instanton solutions dominate the decay from metastabilitythe coordinates around the single instanton solution,
ForJ>1, the crossover from thermal to quantum decay is of
second order. A detailed procedure showing how to obtain au(7) =g (7) +qu(7), (15)
the saddle-point solutions close to the thermal-to-quantum ) ) o )
crossover was given in Ref. 12 and can be applied to calc,@nd rewrite the Euclidean action in terms of the new vari-
late the quantum elastic solutions. In this paper we will con-2Ples,
centrate on the current reginde< 1, where in addition to the
transition from the thermal to the quantum rigid regime a S.=B +gf” dr
crossover from the quantum rigid to the quantum elastic ar o
phase can take place.

The rigid quantum solution is found by setting=0 for ~ The operator€), are defined as
k>0. In this case the equatio®Sc / 5g,=0 with k>0 are
trivially satisfied and the remaining equation for=0 de- o 1 (= Se[q9] -
scribes the thermally assisted quantum tunneling of a single Qxak(7)= —f dr' ————— 0«
degree of freedomyy. Its solution is the well-known instan- 9J=m oa(m)daw(7")
ton obtained by Larkin and Ovchinnikdv :(Mk_4q(()0))QK( 7

6>2 1 6 (= &a (7") =17
—_— . (13) R 4 k C
6o 1—\1- 6% 62cos 7) i I

Insertingq” andq,=0 into Eq.(5), one obtains the ex- To determine the split instantons, we have to find saddle

N—-1

1 ~ A~ ~
5 2 GQE*TMa)|. (16
k=0

(")

ag(7) =

tremal action in the rigid quantum regime points of the action with nonzerg,. Hence we have to
L 5 solve the equations of motion,
0
By=Bo|1— 35|+ |, 14 ~
o 0[ 3(90) } (14 .~ aN(Q)
Qxak=— : (17)

whereBy=27N7e?. 0
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which constitute a system of coupled nonlinear differential
equations. In general, they cannot be solved exactly. How-
ever, close to the saddle-point bifurcation, the extremal am-
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Y= Er Cm,neim

n=-—ow

plitudesq, are small and we can calculate approximate sohave Fourier coefficients of the form
lutions by applying an iterative perturbation scheme. This

leads to a hierarchy of inhomogenedimngar equations,

Qi =F{, (18)
wherei denotes the iteration step. In the first iteratienl
we take only terms into account that are lineargin The
higher-order terms on the right-hand side of Efj7) are
neglected. ThusE{"=0 and Eqgs.(18), which have to be
solved, are homogeneous. Hor 1, the amplitudes calcu-
lated in the previous iteration are substituted iafs” such
that the inhomogeneous terms are given by

JINQU V()]

FO(r)=-
e

(19

Bn(Cmntdmn),  N=0,

+By(Cpntdpg), *m>0, n<o,

Cm,n:[

with d,, ,=0 for [m|<2 and|n|+2>|m|=2. Note that the
¥ are even(odd for positive (negative m and theB,,, are
chosen such that the eigenfunctions are normalized,

(Y )= f dryp(n) =1,
For m=0,1 they obtained

Em,nz (21)

bo 0| o—bln|
|n| 2_0Am) €

with tanhb=46/6,. In fact, calculating the remaining coeffi-

After each iteration step we thus obtain approximatspe- cients form=—1 andm=2, we find that Eq(21) holds for

cial) solutions for the amplitudeg, by formally inverting

ith
Eq. (18), any m wit
( ~

i ~Cons In[<[m[-2,

A =Q FY. (20 ™ 20
Of course, a straightforward inversion is not possibleQjf 1/ 62
is singular. Below, we will discuss how to handle equations dmn=¢ = —2+1 , n=m-—2=0,
with a singular operator. ' 216

The inversion is most conveniently performed by repre- 1{ g2

senting Eq(20) in terms of the eigenfunctions of the opera- _<_‘2)_ g bm=4)  |n|=|m|—2>0.
tors Q, which we will determine now. One realizes that the \ 416

operatorsQ, andQ, only differ by a constant term With these results, we now represent E2) in terms of

A A the basisy,,, with
Qx=Qo+ uk— po- "
They trivially commute and have a common set of eigen- ~(i)_ E (i

. . K - k"= < k,m(/’ma
functions ¢,,,. The eigenvalues\ ,, of the operator€, are m= —o
related by

©

(i) — (1)
AK=AC+ s — . Fi'= Zm flemtm.,

It is, therefore, sufficient to concentrate on the eigenvalugind obtain a special solution in terms of the coefficients
problem

e =fO AR, if AK#o0. (22)
Qotm=Anm, ,

_ _ ° m_ mem L If for somek’ andm’ the eigenvalue/\'r‘n,=0, the operator
which was studied by Larkin and Ovchinnikdun the con- @, is singular and a unique solution of EG.8) cannot be
text of single-particle tunneling with dissipation. They ob- found within theith iteration. However, after performing all
tained the spectrum necessary iterations, the solutions have to be the lowest-lying

saddle point of the Euclidean action. This constraint enables

0_ _
A=—2+2a, us to determine the so far arbitrary coefficienfgym, by
0 requiring that the Euclidean action as a function of the coef-
Ao=—2a, ficients has to be minimal,
A%,=0, SE({cf(i,)‘m,}):min.

Af=2[1+(Im[=2)6/6,], |m[=2,

V. NONUNIFORM INSTANTON SOLUTION

where a.=1/2++/5/4— 492/4902 and showed that the eigen-
functions

After we have explained in detail how to obtain the ap-
proximate solutions, we are now ready to perform the calcu-
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lations explicitly. Let us define the parameter=(u,

— mo)/2=1/\/J. First, we show that the instanton splitting
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Se(§)=Bgr+gl(a—ac) 2+ 6¢%]. (24)

occurs ata= a, and then we apply the perturbation schemeThe cased<0, which indicates that a first-order transition

to determine the split-instanton solutions.
The negativeAg indicates that the operatcf@o has an

has occurred will be discussed later in more detail. Bor
>0, the minimal value of S¢ is given by |{]

unstable mode, which is responsible for the imaginary part of V(e — @)/25 and the extremized action reads

the free energy and hence for the finite decay rate of the

metastable state. Far>a,, the spectrum of); is positive

definite. Sinceu,— wo>2a, for k>1 Aﬁ1>0 and hence all
higher modes,.- o are stable. Fou<e«,, the lowest eigen-

_ g(a'_ac)z

qu: Se(4)= qu 45 (29

Note that{ is small close toa, and can be regarded as a

value A§ of Q; becomes negative, indicating that the corre-perturbation parameter.
sponding mode also becomes unstable and that a new saddle|n the first iteration we considered corrections to the

point with a lowerSg exists. Thus ate= « a split-instanton
solution emerge®.

To determine the split-instanton solutions @& a., we
now apply the iterative procedure and solve Ed$). In the
first iteration F{Y=0. According to Eq.(22) most of the
coefficientsc(’y, are zero except§ ; andc{’). The coeffi-
cient ¢, cannot be uniquely determined sin¢€ ;=0.
However, the corresponding odd eigenfunctipn, is asso-

ciated to imaginary time translation symmetry and does no,
contribute to the value oz . We have, therefore, the free-
dom to choose{’ ;=0 within this and the following itera-

tions. At a=ag, WhereAézo, the operatoQ; becomes

singular. Here the instanton splits since the coefficiént
Ec(fg of the dangerous mode, of Ql can have a finite

value that remains to be determined by minimizig ().
To lowest order, the split-instanton solutionet « is thus
given by

M =Lgo(r), iRy (n=0. (23)

single instanton solution of the ordér In order to determine
5, the split-instanton solution up to orders &t has to be
treated. Consequently, we have to perform the second itera-
tion of the perturbation procedure. The inhomogeneous

termsF{?) in Eq. (18) are found by substituting{" into Eq.
(19). Fork+0,2 theF{(?=0, henceq{®=0q"), whereas for
k=0,2 we obtainF{?=2¢2(y0)? and F$=272(yo)>.

he remaining task within this iteration is to solve the equa-
ions

QAP =222(p)?,

Q.08 =28%(yo)”.
Representing ¢,)? in the basisy,,, we obtain

©

(o) %= 20 Amim-

m=

In analogy with the Landau theory of phase transitions We\igte that the oddy,, with m<0 do not appear in the sum,

can interpretSz as a thermodynamic potential agdas an

since (/)2 is an even function. The coefficients, are

order parameter. A finit¢ indicates the existence of a quan- given by

tum elastic solution.
Using Qi(a)=0;(a)+2(a—ac), recaling that
Qi(a.)¥,=0 and inserting the perturbative res(@8) into

a-m:<¢m ) ¢g>: 277% CmnCoiCon+i-

Eqg. (16), one obtains the split-instanton action up to terms

quadratic in the dangerous modeSe({)=By +9(«

For our purposes it will be more than sufficient to con-

— ac) £2. However, in order to be able to minimize the action sider only the first three coefficienty,a;, anda,, since

as a function off for a<a,, at least the terms quartic in
have to be calculated,

an/anm+1<<1 in the entire quantum regime. After tedious but
straightforward calculations, we find

18 176, (37 19 63 (69 L2t 65
BT AT 2 38T 4 s
0 e [ L B
T\ e% T2 3| % T 2]y
1 +1 6, (1 +3 0§+3 +5 63
897 8]0 2% 4] (8% 8/
a: y (27)
b 57 (s +703 5\ 60| , +30§ L 3)%
T 7e%m )3 % 2] YT o3\ YT 2
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5 1316 (7 +1308+9 +1398
4% g g \2%T g g 2% g s
a . (29)
2 160 168 162 10, 1|77 3\ 63 3\ 6
ol 1% 10 L6 i, S|P [ 3%
Tag 203 22 20 4 Y2 1% 2]
[
an~0, m>2. (29 the leading terms in Eq$26)—(28). Hence,g/ s in Eq. (25)

o converges to a constant value fér 0. With increasingd
Note that for 6—6, the coefficients converge 1@,  the coefficients decreases and vanishes at the characteristic
—1/y2m anda,—0 fork>0. Substitutingom=2¢’anand  temperature,,, where Eq(25) looses its validity. At the
fom=v2{%an into Eq. (22) we find excellent approxima- first-order and second-order transition lines merge. In anal-
tions of the expansion coefficients’, and c$%,. Having  ogy to the classical theory of phase transitions it is called
determinedq{”) andq$?, the second iteration of the pertur- tricritical temperaturé:® Above 6, the parametes becomes
bation procedure is completed. negative, indicating that the transition from rigid quantum to
Evaluating Eq(16) with agz) ,a(zz)“ézy we obtain the co- elastic quaptum. decay becomes first-order-like. The values
efficient & of the quartic term irS(¢), of th are given in Table | qu=2,3 andN—>oo._Note that
0, is smallest foN=3 and increases monotonically wikh
1 (= ~ L2 for N>3. Recall that6,. is largest forN=2 due to the
0=~ _2J d lﬂo(T)]z( qo®+ —) : (30)  absence ofy, in a system with only two DOF.
o V2 We now concentrate on the case whé€0. Then in

Performing the integral and using the orthogonality of theorder to find the minimal values & , we have to determine
Ym, We find terms of the action ®,

- 2 1 Se({)=Bgr+ 0l (a—ag) 2+ 80+ yL°, (32
o= — 2 arzn(A_o+ A—2> (31) : a ¢
=0
" m m which are obtained in the third iteration= 3) of the pertur-
The functions(6/6,) is shown in Fig. 1 foN=2,3 andN  bation procedure. Fok# 1,3 one hagj{¥=q?. Inverting
—oo0, At first it may be surprising that the curve fol— o the equations

lies in between the curves fof=2 andN=3. The reason is

that for N=2 the mode q, does not exist andé A =(3)_ 45 (2) )

= —3a2/A% . Since A2 =A%+ 8a.co@(w/2N)>0 for N Qu” = (490 + 220, ()
>2 it is clear thatd(6/60y,N=2)>5(6/609,N>2). When

evaluating Eq.(31) for N=3 one obtains the relation Q30 =2\22y(7)qP
6(616y,N)<5(60/69,N+1). In other words, folN>3 the

graphs lie in between the ones fdr=3 andN—<. Inthe  numerically and inserting the values into
limit #—0 we find 6= 6,/6 when taking into account only

1 (= 2
e ' ' v=75 ) _dn —N2eye(nael? - 3 (af)?
56 - 3
2
—<q<22>>2( 2947~ é 5N,3q‘22>> ~[af = ¢vo(7)]

x[2q§+ ﬁqé”]wou)] : (33)

TABLE |. Numerical values of the tricritical curren, tri-
critical temperatured,., the derivative of the coefficient of the
fourth-order terms’ (6. /6y) and the coefficienty(6,./6,) of the
sixth-order term for various numbers of degrees of freedom

FIG. 1. The fourth-order expansion coefficiehbf the Euclid- N 2 3 o
ean actiorSg({) =By, + [ (a— a) £+ 844+ y¢°] as a function of
dimensionless temperatuééd, for N=2,3 degrees of freedom and Jic 0.8424 0.7652 0.7938
the continuous limiN—o. In the low-temperature limif is posi- Orc 0.8719 0.8000 0.8275
tive and diverges ag(6)~1/6. At the tricritical temperaturd,. it 8" (61 6p) —2.274 —1.384 —1.675
vanishes,5(6,.) =0 and becomes negative fér>6,.. The nega- Y(6ic! 0g) 0.4118 0.2105 0.2698

tive & indicates a first-order transition.
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saddle-point bifurcation of the Euclidean action occurring at
a=a.. The dimensionless crossover temperature is then
given by

“" quantum
elastic

0,=(J+I-1)Y2 (35)

For J,.<J<1, the crossover is of first order. The transition
occurs ate= aq. Near 6., we approximated~ &' (6;./6,)

J X[ (60— 6,.)! 5] and find that in this limit the crossover line
is given by

FIG. 2. The decay diagram fak=3 degrees of freedom in
terms of the dimensionless currei 82(1—1/NI.)/[8sirf(m/N)]
and the dimensionless temperatufe= 77BT/2AE sir(m/2N). 220,
Criticality | =NI corresponds td=0. Above 6y(J) the system is 01= Orc+ DYPPRN
in the thermal regime, and dt=1 a second-order crossover from &' (01 0o)
rigid to elastic thermal decay occurs. A, (J) a second-order
crossover from thermal to quantum decay takes place. The quantumhe numerical values foy, 6., andé’(6,./6,) are given
regime 6<, is again separated into rigid and elastic decay. Forin Taple |. Note that since?, 6, diverges ase—a., the
Jo<J<J; the crossover from rigid to elastﬁc o_lecay@(J) is Qf slope of,(J) is infinite at the tricritical point. Fod>1 the
second order. Fod,<J<1 the crossover indicated b§:(J) is  (ansition from the thermal to the quantum elastic region is
first-order like. Tho(“g)h thz d'(agra”; IS S'T"ardfor differMi the  o43in of second order. The crossover temperature is then
temperature®,., 6,(J), andfy(JI>1) are altered. For comparison, _: :

a given by 65(J>1) [see Eq(12)]. The decay diagram of an
the dashed curve showi(J>1) for a dc SQUID N=2). overdamped JJ array witi=3 junctions presented here is
similar to that of the dc SQUID wititN=2. Qualitatively,
with respect ta for a— a,< 5%/3y, one obtains, in addition the diagrams exhibit the same features for\allThe reason

to the rigid instanton solution witli=0, an elastic instanton is that .forJ<1, the transition linesjy(J) and 02(:]) are
solution with determined by the long-wavelength modq{}g) andq, re-

spectively, and hence are independenNoHowever, there

(a—ag)'? (36)

we calculate the coefficieng(6/6,). Minimizing Eq. (32

S 3y is a difference between the diagrams on a quantitative level,
§2=3— —1+\/1- —Z(a—ac) . (39 since 6., 6:(J) and 6y(J>1) are parametrized bi. For
o example, compared to the dc SQUID, the first-order transi-

The first-order transition occurs at= a, = a.+ 62/4y when ~ tion region is enlarged foN>2 and is the largest foN

the nonuniform solution becomes the global minimum of the=3: o ] )
action, Se(¢) = Se(0)=0. The remaining task is to discuss the decay dateexp

Using the perturbation scheme, one could, in principle (~B/#) in the four regimes. To exponential accuratyis
determine the split-instanton solution to arbitrary ordegin determined by the extremal of the actiBnwhich is given
For our discussion of the behavior of the decay rate close t8Y the Euclidean actioS evaluated at the relevant saddle-
the crossover from the single instanton to the split-instantof@int configurationes, B(J,6)=Se[¢]. The behavior of

regime, the calculation shown above is sufficient. the rate in the thermal regime was discussed in Ref. 9. Since
the thermal saddle poinig,s are independent of imaginary
VI. RESULTS AND DISCUSSIONS time, B=AV(¢s)/T and the rate reduces to the classical

Arrhenius form,I"~exp(—V(¢s)/T). In the thermal rigid

In this section, we discuss the various decay regime;egimeB is given by

which are presented in the decay diagréfig. 2). Let us

start with the thermal regim&> 6,(J), where the decay
occurs via thermal activation. Far<1, the coupled DOF 2By NA)
behave like a single DOF since the coupling energy is large Btr:T 0
compared to the thermal or the barrier energy. Then the sys-

tem is in the rigid thermal regime. Increasidgone enters o ) )
the elastic thermal decay regifnpassing the second-order Realizing that in the thermal regimes=—(2/\g

crossover line al=1. On the other hand, starting in the +1/A%)/(2m) and recalling thate=1//J, one finds, with
thermal rigid phase and reducing quantum fluctuations the help of Eq(9), the thermal elastic result,

become important and ai,(J) a second-order crossover

from thermal to quantum decay takes plddewvo character- (a—1)2
istic currentsJo=0.3820 andl;. as given in Table | become Bie= Btr—g4—5,
important in the quantum regime. Belaly, the system pref-

erably decays via the single instanton or rigid quantum

saddle-point solution. Fa>J, a transition from the rigid to  In the rigid quantum regime, the acti@y, is given by Eq.
the elastic quantum decay regime becomes possibleJfor (14). Inserting Eqg.(34) into Eq. (32) we find the extremal
<J<J., the crossover is of second order and is caused by action in the quantum elastic regime fb«< 1,

J<1. (37)

J=1. (39
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marized in a decay diagram in Fig. 2. To calculate the decay
rate we use the thermodynamic method. In the saddle-point
approximation, the decay is then determined by the most
probable configurations leading to an escape from the trap
which are given by the saddle points of the Euclidean action.
In the thermal regime the saddle-point solutions are indepen-
dent of the imaginary time and identical to the saddle points
of the potential energy If the interaction between the DOF
. is strong compared to the barrier energy, rigid configurations
0 02 04 p ' ‘ dominate the decay. Reducing the bias current, the barrier
: ) 0. 038 1 becomes larger and above a critical value the system prefer-
0/6, ably decays via an elastic configuration. On the other hand,
starting in the rigid thermal regime and lowering the tem-
FIG. 3. The extremal of the actioB as a function of tempera- perature, quantum fluctuations become important and the de-
ture @ for various normalized currenfs The dashed line shows the cay most probably occurs via the rigid quantum saddle-point
purely thermal behavior in the rigid regime. The rigid quantum or single-instanton solution of the Euclidean actiomside
dotted lines displaf8 of a system wittN=3 degrees of freedom for  p,y; increasing the barrier above a critical value. In order to
J=0.6 andJ=0.9, respectively. Fod=0.6 a second order cross- yoiarmine the nonuniform instanton solutions of the quantum
over to the split-instanton regime occurs @t=0.7909,. A first . . . . k
- . elastic regime, we worked out an iterative perturbation pro-
order crossover takes place fé=0.9 at §,=0.97%,. The inset d f dth lculati | h
shows the cusplike shape Bfclose to6,. ce urc_e..We performed the calculations close to the crossover
from rigid to elastic quantum decay analytically up to second
order and realized the third-order calculation numerically.
Bge=Bgr— 9 2{9 Sy(a—ag)—28° We were then able to give quant.itative' results for the Qecay
27y rate including the quantum elastic regime. The behavior of
the decay rate is similar for SQUID’s, DJTL's, and long JJ's.
2_ _ 3/ , ,
+2[6"=3y(a—ar) P, (39 In the rigid regime the decay occurs via a saddle point that is

where 8( 6/ 6,) is given by Eq.(31) and y( 6/ 6,) was calcu- uniform in space and hence, the qualitative nature of thermal
lated numerically using Eq33). The rates for various cur- Or quantum decay is not sensitive to the number of DOF.
rentsJ are displayed in Fig. 3 as a function of temperature Further, the crossover from rigid to elastic decay is caused
For J<J, the system is in the rigid regime for all tempera- by the excitation of long-wavelength normal modes of the
turesé (see Fig. 2 For 6/ 8,> 1 the thermal rigid resul37) system, which are equivalent in the three physical systems
applies. In the rigid quantum regint#6,<<1, in comparison  discussed here.
with the purely thermal result, the rate is increased due to We want to emphasize that although our conclusions are
qguantum fluctuations according to E@.4). In the chosen drawn for overdamped systems, the reasoning and the proce-
representatio,, is independent of system-specific param-dure also apply for the underdamped case. Indeed, on a
eters. Experimentally measured decay rates of rigid systengualitative level, the understanding of the quantum rigid-to-
should thus collapse onto one curve. BorJ, tunneling of  elastic crossover in underdamped DJTL’s and long JJ's can
nonuniform instantons becomes possible &B. is re- be obtained on the basis of the theoretical work on
duced further compared 8y, . In Fig. 3 we displayed for SQUID’s. However, in order to have quantitative results,
a system withN=23 degrees of freedom. As an example for one has to extend the theory following the scheme proposed
the behavior of the rate close to a second-order crossover tere.
the split-instanton regime we chode-0.6<J,.. The cross- One interesting aspect of the quantum rigid-to-elastic
over occurs aw,=0.7909,. For J=0.9>J,., the behavior crossover is that depending on the current, it can be either of
of the rate is different. The slope &f,c changes abruptly at first or second order, whereas all other crossovers that we
6,=0.975),, which indicates the occurrence of a first-order discussed are of second order. Even more fascinating is the
crossover. fact that this crossover is an intrinsiziantumproperty and

VIl. CONCLUSIONS can be regarded as one further evidence for MQT, if mea-

sured. Experimental verifications of the predicted enhance-
In the present work, we studied the decay of metastablenent of the decay rate due to the elastic propelses Fig.

states in current-driven parallel coupled one-dimensionaB) are thus highly desirable. An experimental detection of the
Josephson-junction arrays at zero voltage in the overdampduist-order-like crossover would be challenging, but seems to
limit. We model this system by elastically coupled DOF be difficult, because the cusplike behavior of the rate at the
trapped in the minimum of the single-particle potential andcrossover is not very pronounced and occurs in a small cur-
interacting with a bath of harmonic oscillators. The escapeent interval. In standard experiments, the rate is obtained
from the trap can be induced by thermal or quantum fluctuafrom the switching current histogram. The current intervals
tions. Three energy scales determine the decay behavior of the histogram have to be much smaller thaNI1g1
the system; the temperature, the barrier height of the trap; J,o)sin'(#/2N)/ 8% and the number of events per interval
and the interaction between the particles. Accordingly, onéarge in order to resolve the cusplike feature. Furthermore, it
finds four different regimes for the decay rate which we sum-would be convenient to perform the measurements on sys-

B/B,

0.6
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tems withN=3 DOF since in this case the first-order region would give further evidence for macroscopic quantum tun-
is the largestsee Fig. 2 neling in these systems.
In sum, we calculated the decay rate of overdamped ACKNOWLEDGMENTS
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