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Metastability in Josephson transmission lines
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Thermal activation and macroscopic quantum tunneling in current-biased discrete Josephson transmission
lines are studied theoretically. The degrees of freedom under consideration are the phases across the junctions
which are coupled to each other via the inductances of the system. The resistively shunted junctions that we
investigate constitute a system ofN interacting degrees of freedom with an overdamped dynamics. We calcu-
late the decay rate within exponential accuracy as a function of temperature and current. Slightly below the
critical current, the decay from the metastable state occurs via a unique~rigid! saddle-point solution of the
Euclidean action describing the simultaneous decay of the phases in all the junctions. When the current is
reduced, a crossover to a regime takes place, where the decay occurs via anelasticsaddle-point solution and
the phases across the junctions leave the metastable state one after another. This leads to an increased decay
rate compared with the rigid case both in the thermal and the quantum regime. The rigid-to-elastic crossover
can be sharp or smooth analogous to first- or second-order phase transitions, respectively. The various regimes
are summarized in a current-temperature decay diagram.
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I. INTRODUCTION

The decay of systems in a metastable state has bee
tensively studied in the last decades.1 At high temperatures
the decay is induced by thermal activation. Lowering t
temperature, under well-defined conditions quantum fluct
tions become important and a crossover from thermal act
tion to quantum tunneling occurs.2–5 For systems with sev
eral interacting macroscopic degrees of freedom~DOF!, the
decay scenario is quite complex. For example, a cross
from rigid decay, where all DOF decay instantly, to elas
decay, where the DOF decay one after another6–8 can take
place in systems with two DOF in the thermal6 as well as in
the quantum decay regime.7,8 Recently, the rigid-to-elastic
crossover was investigated theoretically in systems withN
DOF in the high-temperature limit.9 In this work we study
the various decay regimes that occur in these systems at
temperatures, where quantum tunneling is relevant.

A system in a metastable state decays most probably
the lowest-lying saddle-point configuration of the Euclide
action. A crossover in the decay rate occurs, if a new low
lying saddle point appears upon tuning an external par
eter. It can be continuous or discontinuous. A continuous
second-order crossover occurs when a saddle-point bifu
tion takes place. For example, at the crossover from ther
to quantum decay, the static saddle point that determines
decay at high temperatures bifurcates into dynamic extre
~instantons! that have a lower Euclidean action. This caus
an enhancement of the escape rateG for temperaturesT be-
low the crossover temperatureT0 ~see Refs. 2 and 3!. In
steepest-descent approximationG(T) and its derivative
G8(T) are continuous atT0, whereas the second derivativ
G9(T) diverges. In analogy to a classical phase transiti
Larkin and Ovchinnikov denoted it a second-ord
crossover.3 They pointed out that for some potential shap
G8(T) can become discontinuous atT0 and the crossover is
then of first order. Transitions of this type were later inve
tigated in more detail by Chudnovsky10 and studied in vari-
ous physical systems by others.11,12The crossover from rigid
PRB 610163-1829/2000/61~2!/1506~10!/$15.00
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to elastic decay is similar and both first-order and seco
order crossovers have been found in systems with
DOF.7,8

The DOF we study in this paper are macroscopic a
coupled to their environment. At low temperatures, wh
macroscopic quantum tunneling~MQT! occurs, the interac-
tion of the DOF with the environment leads to quantu
dissipation.13 Among the experiments that have been su
cessfully interpreted in the framework of MQT with dissip
tion are the investigations of the decay of metastable state
current-biased Josephson junctions~JJ’s! and superconduct
ing quantum interference devices~SQUID’s!.14 The relevant
collective coordinate in the case of the JJ is the phase dif
ence across the junction. The dc SQUID consists of t
parallel connected JJ’s and thus enables the study of
quantum dynamics of two coupled degrees of freedom,
phases across the junctions. The natural generalizationN
degrees of freedom are parallel coupled one-dimensio
Josephson-junction arrays, also known as discrete Josep
transmission lines~DJTL’s!. The continuum limitN→` cor-
responds to a long JJ if the length of the junctionl is larger
than the Josephson lengthLJ . The thermal decay of the
phase in underdamped long JJ’s~Refs. 15–17! and over-
damped DJTL’s~Ref. 9! has been investigated recently. Th
quantum tunneling in underdamped long JJ’s has been
lyzed in the limit l→` ~Ref. 15! and in the rigid regimel
& l c , wherel c;LJ is the critical length above which elasti
decay via boundary nucleation sets in.17 To date, the inter-
esting casel * l c has not been treated in the quantum
tunneling regime, neither in the overdamped nor in the
derdamped case. Solving the problem is difficult since th
the saddle-point solutions of the action are inhomogene
in time and space. Two reasons motivated us to studyN
harmonically coupled DOF trapped in a metastable st
First, our model can be used to describe the decay of th
phases in a DJTL and in the continuum limitN→` to rep-
resent a long JJ. The second reason is the need to analyz
so far undiscussed overdamped limit.

Since the decay close to the rigid-to-elastic crossove
1506 ©2000 The American Physical Society
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PRB 61 1507METASTABILITY IN JOSEPHSON TRANSMISSION LINES
determined by the long-wavelength excitations of the s
tem, much insight can be gained from studying dc SQUID
Experiments on dc SQUID’s~Refs. 18–20! showed that at
high currents the classical decay mainly proceeds via
simultaneous activation of both phases across a com
saddle point in the potential-energy landscape. However,
low a crossover current, it was found that this saddle po
splits and the phases decay one after another.6 A similar
phenomenon was proposed to occur in the quantum de
process in underdamped7 and overdamped8 SQUID’s, known
as the instanton splitting. In this case, the common sad
point of the Euclidean action bifurcates into two saddles
lower action. In addition, a regime was found, where up
tuning temperature or current a first-order transition ta
place before the saddle-point bifurcation occurs.

The rigid-to-elastic crossover in DJTL’s is similar. O
course, instead of two DOF, one then hasN coupled DOF
and the theory has to be generalized accordingly. A per
bative treatment to calculate the elastic instanton solution
the Euclidean action has been sketched in Refs. 7 and 8
case of the dc SQUID. In the present publication, the per
bation scheme is systematically worked out and applied
the problem of an overdamped DJTL in a metastable st
With this procedure one is able to calculate the sp
instanton solution to arbitrary precision. We presentquanti-
tative results for the quantum decay rate of overdamped
SQUID’s, DJTL’s and long JJ’s close to the rigid-to-elas
crossover. We further construct the decay diagram of DJT
and long JJ’s and compare it to the one of dc SQUID’s.

The paper is organized as follows: In Sec. II we introdu
the Euclidean action to describe the quantum decay
DJTL’s with dissipation. In Sec. III, we discuss the sadd
point solutions of the action as a function of the temperat
and the driving current. An iterative perturbation procedu
to calculate these extrema close to a saddle-point bifurca
is presented in Sec. IV. This method is then applied to ev
ate the split-instanton solutions in Sec. V. The various de
regimes, which are summarized in a diagram and the co
sponding relaxation rates are discussed in Sec. VI. Fina
the conclusions are drawn in Sec. VII.

II. MODEL

A. Decay rate

The probability per unit time for a metastable state
decay at a finite temperatureT is related to the imaginary
part of the free energyF by G5(2/\)Im F, as was shown by
Affleck.2 In the path-integral representation, the free ene
is given byF52kT ln@rD@q#exp(2SE@q#/\)#, whereSE is
the Euclidean action andq is a vector representing the DOF
If the energy barrier that the system has to overcome in o
to leave the metastable state is large, the sum over pat
dominated by the extremal trajectories and the latter can
treated in the semiclassical approximation. The decay
then reads

G5Ae2B/\, ~1!

whereB is the Euclidean actionSE evaluated at the extrema
saddle-point trajectory andA is a prefactor that can be ob
tained by considering the fluctuations around the extre
path. In this work, we will determine the exponentB.
-
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B. Euclidean action

The Euclidean action of a system ofN identical JJ’s in the
presence of a bias currentI is

SE5E
0

\/T

dt@K~w!1V~w!1D~w!#,

where t is the imaginary time,w5(w0 , . . . ,wN21) repre-
sents the phase differences across the junctions,V is the po-
tential energy, andD models the dissipation. The ‘‘kinetic’’
energy containing the capacitancesC of the JJ’s is given by

K~w!5
m

2 (
n50

N21 S ]wn

]t D 2

,

wherem5C(F0/2p)2 corresponds to the ‘‘mass’’ of a fic
titious particle andF05hc/2e is the flux quantum. The po
tential energy consists of two parts,

V~w!5U~w!1E~w!,

where U(w)5EJ(@12cos(wn)2(I/NIc)wn# represents the
tilted washboard potential of the driven JJ’s that arises du
the relation between currents and gauge invariant pha
across the junctions. HereI is the total current through the
system,I c is the critical current of a single junction, an
EJ5(F0/2p)I c is the Josephson energy. We concentrate
the experimentally most interesting limit of currents close
criticality, NIc2I !I c , where the tilted washboard potenti
can be well approximated by its cubic expansion,

U~w!5U01
EJ

2 (
n50

N21 Fe~wn2w̃ !22
1

3
~wn2w̃ !3G .

Here e5A2(12I /NIc) is a small parameter that indicate
the distance from criticalityI 5NIc , w̃5p/22e is the value
of the phase at the minimum of the potential, andU0 is an
irrelevant constant that will be dropped in the followin
Taking only the self-inductancesL of the loops into accoun
and neglecting the mutual inductances,21 the interaction en-
ergy between the loops is

E~w!5
EJ

2b (
n50

N22

~wn112wn!2,

where b5LI c
2/EJ is the McCumber parameter. We mod

dissipation due to an Ohmic shunt resistanceR using the
Caldeira-Leggett approach13

D~w!52
h

2pE0

\/T

dt8
]w

]t8
•

]w

]t
lnUsinFpT

\
~ t2t8!GU,

whereh51/R is the phenomenological friction coefficien
In the following we will treat the overdamped limit and ne
glect the contribution of the capacitive termK(w) to the
action. It is convenient to perform a transformation to dime
sionless normal coordinates,

wn~ t !5w̃12eq0~t!12A2e (
k51

N21

qk~t!cosS pk~n11/2!

N D .

~2!
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1508 PRB 61THORSTEN DRÖSE AND CRISTIANE MORAIS-SMITH
Note that theqk are functions of the dimensionless imagina
time t52pTt/\2p. We now define the dimensionless p
tential energy,

V~q!5
1

2NEJe
3

V~w!5
1

2 (
k50

N21

mkqk
21N~q!, ~3!

where

mk5
8

be
sin2S pk

2ND12 ~4!

are the eigenvalues of (]m]nV) evaluated at the local mini
mum q50. N(q) contains the cubic terms

N~q!52
2

3
q0

322q0 (
k51

N21

qk
22

A2

3 (
k51

N21

qk
2~q2k2q2(N2k)!

2
2A2

3 (
m.k51

N21

qmqk~qm1k1qm2k2q2N2m2k!

with qk50 for k.N21.
The action in terms of the dimensionless coordina

reads

SE5gE
2p

p

dtLE , ~5!

where the Euclidean Lagrangian is

LE5V~q!2
u

pAJ

]q

]tE2p

p

dt8
]q

]t8
lnUsinFt2t8

2 GU.
Here g5N\EJe

3/pT@1 is the semiclassical parameter,u
5phbT/2\EJsin2(p/2N) is the dimensionless temperatur
and J5(be)2/@2 sin(p/2N)#4 is the dimensionless curren
Note thatJ50 corresponds toI 5NIc .

III. EXTREMA OF THE EUCLIDEAN ACTION

By applying the variational principle to the Euclidean a
tion, one finds the classical equations of motion in imagin
time

¹qV~q!1
u

pAJ
E

2p

p

dt8
]q

]t8
cotFt2t8

2 G50. ~6!

Their solutions are given by the extremal trajectories,
which the saddle-point solutions are of special interest, si
they lead to the decay of the chain from its metastable st
At high temperatures, quantum fluctuations play a minor r
and the solutions of the equation of motion are time indep
dent, ]tq50. Hence, they are given by the extrema of t
potential,¹qV(q)50. However, below a crossover temper
ture u0, quantum tunneling becomes relevant for the de
process and the solutions of the equation of motion ar
function of the imaginary time. In the following paragraph
we first analyze the extrema of the potential, which det
mine the decay in the thermal regime. Then we derive
expression for the crossover temperatureu0 from thermal to
quantum tunneling and finally analyze the time-depend
s
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extremal solutions of the Euclidean action, the instanto
which lead to decay via quantum tunneling.

A. Saddle points of the potential energy

A trivial type of saddle-point solution can be readily co
structed from physical arguments. Consider the case wh
the attractive interaction between the particles is much lar
than the energy barrier. At high temperatures, the stron
coupled particles most probably are thermally activated o
the barrier all at once and the chain basically behaves
rigid rod. In this case the saddle point of the potentialV is
identical to the local maximum of the single DOF potenti
w05•••5wN215e1p/2, which readsq051, qk.050 in
normal mode representation. If, on the other hand, the ene
barrier is of the order of the interaction strength or ev
larger, another saddle point of the potential emerges. T
above a certain barrier height the chain preferably decays
a kinked saddle-point solution withqk.0Þ0 that we call
elastic.

Taking the second derivatives of Eq.~3! at qrs
5(1,0, . . . ,0) weevaluate the eigenvalues of the curvatu
matrix at the thermal rigid saddle point,

lk
rs5]k

2V~qrs!5
8

be
sin2S pk

2ND22. ~7!

Note thatl1
rs52(1/AJ21) becomes negative forJ.1, in-

dicating that another saddle appears. Thiselasticsolution has
a lower activation energy and hence becomes the most p
able configuration leading to escape from the metasta
state.9

To determine the saddle points, one has to solve a sys
of N coupled nonlinear equations. So far, elastic saddles h
been calculated exactly forN52, Ref. 6 andN53, Ref. 9.
Close to the crossoverJ*1, theqk.0 are small. Hence, for
N.3, approximate solutions can be found.9 Expanding
around the rigid saddle,q0511q̃0 andqk5q̃k for k.0, we
approximate the potential energy by

V5
1

3
1

1

2 (
k50

N21

lk
rsq̃k

22q̃1
2~2q̃01A2q̃2!. ~8!

Solving ¹qV50, one finds q̃1
25l0

rsl1
rsl2

rs/(4l0
rs18l2

rs),

q̃052q̃1
2/l0

rs , q̃25A2q̃1
2/l2

rs , and q̃k.250. Hence, the ei-
genvalues of the curvature matrix evaluated at the ela
saddle fork5” 1 arelk

es;lk
rs , whereasl1

es52ul1
rsu. Inserting

these results into Eq.~8!, one finds that the activation energ
is reduced due to the elasticity. Close to the crossover, wh
J*1, it is given by

V'
1

3
2

ul0
rsul2

rs

4~l0
rs12l2

rs!
S 1

AJ
21D 2

. ~9!

B. Crossover temperature from thermal to quantum decay

In the following, we derive the crossover temperatureu0.
Since the time-dependent quantum saddle-point solutions
periodic int with a period 2p, they can be represented by
Fourier series. Near the crossover, the Fourier series ca
well approximated byq(t)'qts1p cos(t), whereqts is the
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PRB 61 1509METASTABILITY IN JOSEPHSON TRANSMISSION LINES
thermal saddle point under consideration~rigid or elastic!
andp is a small correction term due to quantum fluctuatio
Substitutingq(t) into the linearized equation of motion,

@]k] lV~qts!#p cos~t!5
up

pAJ
E dt8sin~t8!cotS t2t8

2 D ,

one finds an eigenvalue equation for the potential curva
matrix,

@]k] lV~qts!#p52
2u

AJ
p.

The only negative eigenvalue of the curvature mat
@]k] lV(qts)# evaluated at the saddle point of the potentia
given by l0, the curvature along the unstable directio
Hence the crossover temperature is given by

u05
ul0uAJ

2
. ~10!

For the rigid regime, wherel0
rs522 we thus find

u0~J,1!5AJ, ~11!

and in the elastic regime withl0
es'l0

rs22l1
rsl2

rs/(l0
rs

2l2
rs)

u0~J*1!5AJ1~J2AJ!S 22
1

2 cos2~p/2N!
D . ~12!

C. Instantons

For u,u0 quantum tunneling becomes relevant and
instanton solutions dominate the decay from metastabi
For J.1, the crossover from thermal to quantum decay is
second order. A detailed procedure showing how to ob
the saddle-point solutions close to the thermal-to-quan
crossover was given in Ref. 12 and can be applied to ca
late the quantum elastic solutions. In this paper we will co
centrate on the current regimeJ,1, where in addition to the
transition from the thermal to the quantum rigid regime
crossover from the quantum rigid to the quantum ela
phase can take place.

The rigid quantum solution is found by settingqk50 for
k.0. In this case the equationsdSE /dqk50 with k.0 are
trivially satisfied and the remaining equation fork50 de-
scribes the thermally assisted quantum tunneling of a sin
degree of freedomq0. Its solution is the well-known instan
ton obtained by Larkin and Ovchinnikov3

q0
(0)~t!5S u

u0
D 2 1

12A12u2/u0
2cos~t!

. ~13!

Insertingq0
(0) andqk.0

(0) 50 into Eq.~5!, one obtains the ex
tremal action in the rigid quantum regime

Bqr5B0F12
1

3 S u

u0
D 2G , ~14!

whereB052pNhe2.
.
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As for J.1, nonuniform saddle-point solutions of th
action exist in the quantum regime in a certain parame
range even forJ,1. If the action evaluated at this extremu
is lower thanBqr , the nonuniform configuration is the mos
probable one leading to decay from the metastable state
quantum tunneling. Tuning the temperatureu at a fixed bias
current, a nonuniform saddle-point solution can develop
two different ways. One possibility is that a less probab
nonuniform configuration, which coexists with the rig
saddle point above a critical temperatureu1, becomes the
lowest-lying saddle point of the Euclidean action belowu1.
Then the most probable configuration abruptly changes fr
uniform to nonuniform. Since the first derivative of the ra
]uG is discontinuous atu1, the crossover is of first order
Another scenario is encountered, if at a critical temperat
u2 the rigid saddle point bifurcates into new saddle poi
which have the lowest action. This crossover, known as
stanton splitting,7,8 is of second order.

A strategy to determine nonuniform saddle-point so
tions for J,1 is to first search for a saddle-point splittin
and then to verify whether a first-order transition might ha
occurred before the bifurcation has taken place. If a fir
order transition can be ruled out, the new bifurcated sad
points have the lowest action. In this case the bifurcat
causes a second-order crossover from a single to a s
instanton regime.

Following this idea, we first identify the saddle-point b
furcation, calculate the split instantons and test whethe
not a first-order transition has already occurred.

IV. ITERATIVE PERTURBATION SCHEME

In this section we present an iteration scheme to calcu
the split-instanton solutions forJ,1. We start by expanding
the coordinates around the single instanton solution,

qk~t!5qk
(0)~t!1q̃k~t!, ~15!

and rewrite the Euclidean action in terms of the new va
ables,

SE5Bqr1gE
2p

p

dtF1

2 (
k50

N21

q̃kQ̂kq̃k1N~ q̃!G . ~16!

The operatorsQ̂k are defined as

Q̂kq̃k~t!5
1

gE2p

p

dt8
d2SE@q(0)#

dqk~t!dqk~t8!
q̃k~t8!

5~mk24q0
(0)!q̃k~t!

1
u

pAJ
E

2p

p

dt8
]q̃k~t8!

]t8
cotS t2t8

2 D .

To determine the split instantons, we have to find sad
points of the action with nonzeroq̃k . Hence we have to
solve the equations of motion,

Q̂kq̃k52
]N~ q̃!

]q̃k

, ~17!
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1510 PRB 61THORSTEN DRÖSE AND CRISTIANE MORAIS-SMITH
which constitute a system of coupled nonlinear differen
equations. In general, they cannot be solved exactly. H
ever, close to the saddle-point bifurcation, the extremal a
plitudes q̃k are small and we can calculate approximate
lutions by applying an iterative perturbation scheme. T
leads to a hierarchy of inhomogeneouslinear equations,

Q̂kq̃k
( i )5Fk

( i ) , ~18!

where i denotes the iteration step. In the first iterationi 51
we take only terms into account that are linear inq̃k . The
higher-order terms on the right-hand side of Eq.~17! are
neglected. Thus,Fk

(1)50 and Eqs.~18!, which have to be
solved, are homogeneous. Fori .1, the amplitudes calcu
lated in the previous iteration are substituted into]N such
that the inhomogeneous terms are given by

Fk
( i )~t!52

]N@ q̃( i 21)~t!#

]q̃k

. ~19!

After each iteration stepi, we thus obtain approximate~spe-
cial! solutions for the amplitudesq̃k by formally inverting
Eq. ~18!,

q̃k
( i )5Q̂k

21Fk
( i ) . ~20!

Of course, a straightforward inversion is not possible, ifQ̂k
is singular. Below, we will discuss how to handle equatio
with a singular operator.

The inversion is most conveniently performed by rep
senting Eq.~20! in terms of the eigenfunctions of the oper
tors Q̂k which we will determine now. One realizes that th
operatorsQ̂0 andQ̂k only differ by a constant term

Q̂k5Q̂01mk2m0 .

They trivially commute and have a common set of eige
functionscm . The eigenvaluesLm

k of the operatorsQ̂k are
related by

Lm
k 5Lm

0 1mk2m0 .

It is, therefore, sufficient to concentrate on the eigenva
problem

Q̂0cm5Lm
0 cm ,

which was studied by Larkin and Ovchinnikov22 in the con-
text of single-particle tunneling with dissipation. They o
tained the spectrum

L1
052212ac ,

L0
0522ac ,

L21
0 50,

Lm
0 52@11~ umu22!u/u0#, umu>2,

where ac51/21A5/42u2/u0
2 and showed that the eigen

functions
l
-
-
-
s

s

-

-

e

cm5 (
n52`

`

Cm,neint

have Fourier coefficients of the form

Cm,n5H Bm~C̃m,n1dm,n!, n>0,

6Bm~C̃m,n1dm,n!, 6m.0, n,0,

with dm,n50 for umu,2 andunu12.umu>2. Note that the
cm are even~odd! for positive ~negative! m and theBm are
chosen such that the eigenfunctions are normalized,

^cm ,cm&5E
2p

p

dtcm
2 ~t!51.

For m50,1 they obtained

C̃m,n5S unu2
u0

2u
Lm

0 De2bunu ~21!

with tanhb5u/u0. In fact, calculating the remaining coeffi
cients form<21 andm>2, we find that Eq.~21! holds for
any m with

dm,n55
2C̃m,n , unu,umu22,

n5m1250,

1

2 S u0
2

u2
11D , n5m2250,

1

4 S u0
2

u2
21D e2b(umu24), unu5umu22.0.

With these results, we now represent Eq.~20! in terms of
the basiscm with

q̃k
( i )5 (

m52`

`

ck,m
( i ) cm ,

Fk
( i )5 (

m52`

`

f k,m
( i ) cm ,

and obtain a special solution in terms of the coefficients

ck,m
( i ) 5 f k,m

( i ) /Lm
k , if Lm

k 5” 0. ~22!

If for somek8 andm8 the eigenvalueLm8
k8 50, the operator

Q̂k is singular and a unique solution of Eq.~18! cannot be
found within thei th iteration. However, after performing a
necessary iterations, the solutions have to be the lowest-l
saddle point of the Euclidean action. This constraint enab
us to determine the so far arbitrary coefficientsck8,m8

( i ) by
requiring that the Euclidean action as a function of the co
ficients has to be minimal,

SE~$ck8,m8
( i ) %!5min.

V. NONUNIFORM INSTANTON SOLUTION

After we have explained in detail how to obtain the a
proximate solutions, we are now ready to perform the cal
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lations explicitly. Let us define the parametera5(m1

2m0)/251/AJ. First, we show that the instanton splittin
occurs ata5ac and then we apply the perturbation schem
to determine the split-instanton solutions.

The negativeL0
0 indicates that the operatorQ̂0 has an

unstable mode, which is responsible for the imaginary par
the free energy and hence for the finite decay rate of
metastable state. Fora.ac , the spectrum ofQ̂1 is positive
definite. Sincemk2m0.2a, for k.1 Lm

k .0 and hence all
higher modesqk.0 are stable. Fora,ac , the lowest eigen-
valueL0

1 of Q̂1 becomes negative, indicating that the cor
sponding mode also becomes unstable and that a new s
point with a lowerSE exists. Thus ata5ac a split-instanton
solution emerges.8

To determine the split-instanton solutions fora&ac , we
now apply the iterative procedure and solve Eqs.~18!. In the
first iteration Fm

(1)50. According to Eq.~22! most of the
coefficientsck,m

(1) are zero exceptc0,21
(1) andc1,0

(1) . The coeffi-
cient c0,21

(1) cannot be uniquely determined sinceL21
0 50.

However, the corresponding odd eigenfunctionc21 is asso-
ciated to imaginary time translation symmetry and does
contribute to the value ofSE . We have, therefore, the free
dom to choosec0,21

( i ) 50 within this and the following itera-
tions. At a5ac , whereL0

150, the operatorQ̂1 becomes
singular. Here the instanton splits since the coefficienz

[c1,0
(1) of the dangerous modec0 of Q̂1 can have a finite

value that remains to be determined by minimizingSE(z).
To lowest order, the split-instanton solution ata5ac is thus
given by

q̃1
(1)~t!5zc0~t!, q̃k5” 1

(1) ~t!50. ~23!

In analogy with the Landau theory of phase transitions
can interpretSE as a thermodynamic potential andz as an
order parameter. A finitez indicates the existence of a qua
tum elastic solution.

Using Q̂1(a)5Q̂1(ac)12(a2ac), recalling that
Q̂1(ac)c150 and inserting the perturbative result~23! into
Eq. ~16!, one obtains the split-instanton action up to ter
quadratic in the dangerous mode,SE(z)5Bqr1g(a
2ac)z

2. However, in order to be able to minimize the acti
as a function ofz for a,ac , at least the terms quartic inz
have to be calculated,
f
e

-
dle

t

e

s

SE~z!5Bqr1g@~a2ac!z
21dz4#. ~24!

The cased<0, which indicates that a first-order transitio
has occurred will be discussed later in more detail. Fod
.0, the minimal value of SE is given by uzu
5A(ac2a)/2d and the extremized action reads

Bqe5SE~z!5Bqr2
g~a2ac!

2

4d
. ~25!

Note thatz is small close toac and can be regarded as
perturbation parameter.

In the first iteration we considered corrections to t
single instanton solution of the orderz. In order to determine
d, the split-instanton solution up to orders ofz2 has to be
treated. Consequently, we have to perform the second it
tion of the perturbation procedure. The inhomogeneo
termsFk

(2) in Eq. ~18! are found by substitutingq̃k
(1) into Eq.

~19!. For kÞ0,2 theFk
(2)50, henceq̃k

(2)5q̃k
(1) , whereas for

k50,2 we obtainF0
(2)52z2(c0)2 and F2

(2)5A2z2(c0)2.
The remaining task within this iteration is to solve the equ
tions

Q̂0q̃0
(2)52z2~c0!2,

Q̂2q̃2
(2)5A2z2~c0!2.

Representing (c0)2 in the basiscm , we obtain

~c0!25 (
m50

`

amcm .

Note that the oddcm with m,0 do not appear in the sum
since (c0)2 is an even function. The coefficientsam are
given by

am5^cm ,c0
2&52p(

l ,n
Cm,nC0,lC0,n1 l .

For our purposes it will be more than sufficient to co
sider only the first three coefficientsa0 ,a1, and a2, since
am /am11!1 in the entire quantum regime. After tedious b
straightforward calculations, we find
a05

S 13

8
ac1

17

4 D u0

u
2S 37

4
ac1

19

2 D u0
3

u3
1S 69

8
ac1

21

4 D u0
5

u5

A2pF S 2ac1
3

2D u0
3

u3
2S ac1

3

2D u0

u G 3/2 , ~26!

a15

S 2
1

8
ac1

1

8D u0

u
2S 1

4
ac1

3

4D u0
3

u3
1S 3

8
ac1

5

8D u0
5

u5

A2pF S 22ac1
7

2D u0
3

u3
2S ac2

5

2D u0

u G 1/2F S 2ac1
3

2D u0
3

u3
2S ac1

3

2D u0

u G , ~27!
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a25

S 5

4
ac1

13

8 D u0

u
2S 7

2
ac1

13

4 D u0
3

u3
1S 9

4
ac1

13

8 D u0
5

u5

A2pF1

4

u0
4

u4
2

1

2

u0
3

u3
1

1

2

u0
2

u2
2

1

2

u0

u
1

1

4G 1/2F S 2ac1
3

2D u0
3

u3
2S ac1

3

2D u0

u G , ~28!
-

r-

he

istic

al-
led

to
ues

d

am'0, m.2. ~29!

Note that for u→u0 the coefficients converge toa0

→1/A2p andak→0 for k.0. Substitutingf 0,m52z2am and
f 2,m5A2z2am into Eq. ~22! we find excellent approxima
tions of the expansion coefficientsc0,m

(2) and c2,m
(2) . Having

determinedq̃0
(2) and q̃2

(2) , the second iteration of the pertu
bation procedure is completed.

Evaluating Eq.~16! with q̃0
(2) ,q̃2

(2)}z2, we obtain the co-
efficient d of the quartic term inSE(z),

d52
1

z2E2p

p

dt@c0~t!#2S q̃0
(2)1

q̃2
(2)

A2
D . ~30!

Performing the integral and using the orthogonality of t
cm , we find

d52 (
m50

`

am
2 S 2

Lm
0

1
1

Lm
2 D . ~31!

The functiond(u/u0) is shown in Fig. 1 forN52,3 andN
→`. At first it may be surprising that the curve forN→`
lies in between the curves forN52 andN53. The reason is
that for N52 the mode q̃2 does not exist andd
52(am

2 /Lm
0 . Since Lm

2 5Lm
0 18accos2(p/2N).0 for N

.2 it is clear thatd(u/u0 ,N52).d(u/u0 ,N.2). When
evaluating Eq. ~31! for N>3 one obtains the relation
d(u/u0 ,N),d(u/u0 ,N11). In other words, forN.3 the
graphs lie in between the ones forN53 andN→`. In the
limit u→0 we findd}u0 /u when taking into account only

FIG. 1. The fourth-order expansion coefficientd of the Euclid-
ean actionSE(z)5Bqr1g@(a2ac)z

21dz41gz6# as a function of
dimensionless temperatureu/u0 for N52,3 degrees of freedom an
the continuous limitN→`. In the low-temperature limitd is posi-
tive and diverges asd(u);1/u. At the tricritical temperatureu tc it
vanishes,d(u tc)50 and becomes negative foru.u tc . The nega-
tive d indicates a first-order transition.
the leading terms in Eqs.~26!–~28!. Hence,g/d in Eq. ~25!
converges to a constant value foru→0. With increasingu
the coefficientd decreases and vanishes at the character
temperatureu tc , where Eq.~25! looses its validity. Atu tc the
first-order and second-order transition lines merge. In an
ogy to the classical theory of phase transitions it is cal
tricritical temperature.7,8 Aboveu tc the parameterd becomes
negative, indicating that the transition from rigid quantum
elastic quantum decay becomes first-order-like. The val
of u tc are given in Table I forN52,3 andN→`. Note that
u tc is smallest forN53 and increases monotonically withN
for N.3. Recall thatu tc is largest forN52 due to the
absence ofq̃2 in a system with only two DOF.

We now concentrate on the case whered,0. Then in
order to find the minimal values ofSE , we have to determine
terms of the action}z6,

SE~z!5Bqr1g@~a2ac!z
21dz41gz6#, ~32!

which are obtained in the third iteration (i 53) of the pertur-
bation procedure. Fork5” 1,3 one hasq̃k

(3)5q̃k
(2) . Inverting

the equations

Q̂1q̃1
(3)5~4q̃0

(2)12A2q̃2
(2)!zc0~t!,

Q̂3q̃3
(3)52A2zc0~t!q̃2

(2)

numerically and inserting the values into

g5
1

z6E2p

p

dtH 2A2zc0~t!q2
(2)q3

(3)2
2

3
~q0

(2)!3

2~q2
(2)!2S 2q0

(2)2
A2

3
dN,3q2

(2)D 2@q1
(3)2zc0~t!#

3@2q0
(2)1A2q2

(2)#zc0~t!J , ~33!

TABLE I. Numerical values of the tricritical currentJtc , tri-
critical temperatureu tc , the derivative of the coefficient of the
fourth-order termd8(u tc /u0) and the coefficientg(u tc /u0) of the
sixth-order term for various numbers of degrees of freedomN.

N 2 3 `

Jtc 0.8424 0.7652 0.7938
u tc 0.8719 0.8000 0.8275
d8(u tc /u0) 22.274 21.384 21.675
g(u tc /u0) 0.4118 0.2105 0.2698
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we calculate the coefficientg(u/u0). Minimizing Eq. ~32!
with respect toz for a2ac,d2/3g, one obtains, in addition
to the rigid instanton solution withz50, an elastic instanton
solution with

z25
d

3g S 211A12
3g

d2
~a2ac!D . ~34!

The first-order transition occurs ata5a15ac1d2/4g when
the nonuniform solution becomes the global minimum of
action,SE(z)5SE(0)50.

Using the perturbation scheme, one could, in princip
determine the split-instanton solution to arbitrary order inz.
For our discussion of the behavior of the decay rate clos
the crossover from the single instanton to the split-instan
regime, the calculation shown above is sufficient.

VI. RESULTS AND DISCUSSIONS

In this section, we discuss the various decay regim
which are presented in the decay diagram~Fig. 2!. Let us
start with the thermal regimeu.u0(J), where the decay
occurs via thermal activation. ForJ,1, the coupled DOF
behave like a single DOF since the coupling energy is la
compared to the thermal or the barrier energy. Then the
tem is in the rigid thermal regime. IncreasingJ, one enters
the elastic thermal decay regime9 passing the second-orde
crossover line atJ51. On the other hand, starting in th
thermal rigid phase and reducingu, quantum fluctuations
become important and atu0(J) a second-order crossove
from thermal to quantum decay takes place.3 Two character-
istic currents,J050.3820 andJtc as given in Table I become
important in the quantum regime. BelowJ0, the system pref-
erably decays via the single instanton or rigid quant
saddle-point solution. ForJ.J0 a transition from the rigid to
the elastic quantum decay regime becomes possible. FoJ0
,J,Jtc , the crossover is of second order and is caused

FIG. 2. The decay diagram forN53 degrees of freedom in
terms of the dimensionless currentJ5b2(12I /NIc)/@8sin4(p/N)#
and the dimensionless temperatureu5phbT/2\EJsin2(p/2N).
Criticality I 5NIc corresponds toJ50. Aboveu0(J) the system is
in the thermal regime, and atJ51 a second-order crossover fro
rigid to elastic thermal decay occurs. Atu0(J) a second-order
crossover from thermal to quantum decay takes place. The qua
regimeu,u0 is again separated into rigid and elastic decay. F
J0,J,Jtc the crossover from rigid to elastic decay atu2(J) is of
second order. ForJtc,J,1 the crossover indicated byu1(J) is
first-order like. Though the diagram is similar for differentN, the
temperaturesu tc , u1(J), andu0(J.1) are altered. For comparison
the dashed curve showsu0(J.1) for a dc SQUID (N52).
e

,

to
n

s

e
s-

a

saddle-point bifurcation of the Euclidean action occurring
a5ac . The dimensionless crossover temperature is t
given by

u25~J1AJ21!1/2. ~35!

For Jtc,J,1, the crossover is of first order. The transitio
occurs ata5a1. Nearu tc , we approximated'd8(u tc /u0)
3@(u2u tc)/u0# and find that in this limit the crossover line
is given by

u15u tc1
2g1/2u0

d8~u tc /u0!
~a2ac!

1/2. ~36!

The numerical values forg, u tc , andd8(u tc /u0) are given
in Table I. Note that since]au1 diverges asa→ac , the
slope ofu1(J) is infinite at the tricritical point. ForJ.1 the
transition from the thermal to the quantum elastic region
again of second order. The crossover temperature is
given byu0(J.1) @see Eq.~12!#. The decay diagram of an
overdamped JJ array withN53 junctions presented here
similar to that of the dc SQUID withN52. Qualitatively,
the diagrams exhibit the same features for allN. The reason
is that for J,1, the transition linesu0(J) and u2(J) are
determined by the long-wavelength modesq0

(0) and q̃1, re-
spectively, and hence are independent ofN. However, there
is a difference between the diagrams on a quantitative le
sinceu tc , u1(J) and u0(J.1) are parametrized byN. For
example, compared to the dc SQUID, the first-order tran
tion region is enlarged forN.2 and is the largest forN
53.

The remaining task is to discuss the decay rateG;exp
(2B/\) in the four regimes. To exponential accuracy,G is
determined by the extremal of the actionB, which is given
by the Euclidean actionSE evaluated at the relevant saddl
point configurationws , B(J,u)5SE@ws#. The behavior of
the rate in the thermal regime was discussed in Ref. 9. S
the thermal saddle pointswts are independent of imaginar
time, B5\V(ws)/T and the rate reduces to the classic
Arrhenius form,G;exp„2V(ws)/T…. In the thermal rigid
regimeB is given by

Btr5
2B0

3

AJ

u
, J,1. ~37!

Realizing that in the thermal regimed52(2/l0
rs

11/l2
rs)/(2p) and recalling thata51/AJ, one finds, with

the help of Eq.~9!, the thermal elastic result,

Bte5Btr2g
~a21!2

4d
, J*1. ~38!

In the rigid quantum regime, the actionBqr is given by Eq.
~14!. Inserting Eq.~34! into Eq. ~32! we find the extremal
action in the quantum elastic regime forJ,1,

m
r
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Bqe5Bqr2
g

27g2
$9dg~a2ac!22d3

12@d223g~a2ac!#
3/2%, ~39!

whered(u/u0) is given by Eq.~31! andg(u/u0) was calcu-
lated numerically using Eq.~33!. The rates for various cur
rentsJ are displayed in Fig. 3 as a function of temperatu
For J,J0 the system is in the rigid regime for all temper
turesu ~see Fig. 2!. Foru/u0.1 the thermal rigid result~37!
applies. In the rigid quantum regimeu/u0,1, in comparison
with the purely thermal result, the rate is increased due
quantum fluctuations according to Eq.~14!. In the chosen
representationBqr is independent of system-specific para
eters. Experimentally measured decay rates of rigid syst
should thus collapse onto one curve. ForJ.J0 tunneling of
nonuniform instantons becomes possible andB5Bqe is re-
duced further compared toBqr . In Fig. 3 we displayedB for
a system withN53 degrees of freedom. As an example f
the behavior of the rate close to a second-order crossov
the split-instanton regime we choseJ50.6,Jtc . The cross-
over occurs atu250.790u0. For J50.9.Jtc , the behavior
of the rate is different. The slope ofBqe changes abruptly a
u150.975u0, which indicates the occurrence of a first-ord
crossover.

VII. CONCLUSIONS

In the present work, we studied the decay of metasta
states in current-driven parallel coupled one-dimensio
Josephson-junction arrays at zero voltage in the overdam
limit. We model this system byN elastically coupled DOF
trapped in the minimum of the single-particle potential a
interacting with a bath of harmonic oscillators. The esca
from the trap can be induced by thermal or quantum fluct
tions. Three energy scales determine the decay behavio
the system; the temperature, the barrier height of the t
and the interaction between the particles. Accordingly, o
finds four different regimes for the decay rate which we su

FIG. 3. The extremal of the actionB as a function of tempera
tureu for various normalized currentsJ. The dashed line shows th
purely thermal behavior in the rigid regime. The rigid quantu
result is represented by the solid line. The dotted and the das
dotted lines displayB of a system withN53 degrees of freedom fo
J50.6 andJ50.9, respectively. ForJ50.6 a second order cross
over to the split-instanton regime occurs atu250.790u0. A first
order crossover takes place forJ50.9 at u150.975u0. The inset
shows the cusplike shape ofB close tou1.
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marized in a decay diagram in Fig. 2. To calculate the de
rate we use the thermodynamic method. In the saddle-p
approximation, the decay is then determined by the m
probable configurations leading to an escape from the
which are given by the saddle points of the Euclidean acti
In the thermal regime the saddle-point solutions are indep
dent of the imaginary time and identical to the saddle poi
of the potential energy.9 If the interaction between the DOF
is strong compared to the barrier energy, rigid configuratio
dominate the decay. Reducing the bias current, the ba
becomes larger and above a critical value the system pre
ably decays via an elastic configuration. On the other ha
starting in the rigid thermal regime and lowering the te
perature, quantum fluctuations become important and the
cay most probably occurs via the rigid quantum saddle-po
or single-instanton solution of the Euclidean action.3 Inside
the quantum region, an elastic regime can again be ent
by increasing the barrier above a critical value. In order
determine the nonuniform instanton solutions of the quant
elastic regime, we worked out an iterative perturbation p
cedure. We performed the calculations close to the cross
from rigid to elastic quantum decay analytically up to seco
order and realized the third-order calculation numerica
We were then able to give quantitative results for the de
rate including the quantum elastic regime. The behavior
the decay rate is similar for SQUID’s, DJTL’s, and long JJ
In the rigid regime the decay occurs via a saddle point tha
uniform in space and hence, the qualitative nature of ther
or quantum decay is not sensitive to the number of DO
Further, the crossover from rigid to elastic decay is cau
by the excitation of long-wavelength normal modes of t
system, which are equivalent in the three physical syste
discussed here.

We want to emphasize that although our conclusions
drawn for overdamped systems, the reasoning and the pr
dure also apply for the underdamped case. Indeed, o
qualitative level, the understanding of the quantum rigid-
elastic crossover in underdamped DJTL’s and long JJ’s
be obtained on the basis of the theoretical work
SQUID’s.7 However, in order to have quantitative resul
one has to extend the theory following the scheme propo
here.

One interesting aspect of the quantum rigid-to-elas
crossover is that depending on the current, it can be eithe
first or second order, whereas all other crossovers that
discussed are of second order. Even more fascinating is
fact that this crossover is an intrinsicquantumproperty and
can be regarded as one further evidence for MQT, if m
sured. Experimental verifications of the predicted enhan
ment of the decay rate due to the elastic properties~see Fig.
3! are thus highly desirable. An experimental detection of
first-order-like crossover would be challenging, but seems
be difficult, because the cusplike behavior of the rate at
crossover is not very pronounced and occurs in a small
rent interval. In standard experiments, the rate is obtai
from the switching current histogram. The current interv
of the histogram have to be much smaller than 8NIc(1
2Jtc)sin4(p/2N)/b2 and the number of events per interv
large in order to resolve the cusplike feature. Furthermore
would be convenient to perform the measurements on

d-
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tems withN53 DOF since in this case the first-order regi
is the largest~see Fig. 2!.

In sum, we calculated the decay rate of overdamp
current-biased one-dimensional Josephson-junction ar
atzero voltage~including SQUID’s, DJTL’s, and long JJ’s!
analytically and numerically in several distinct decay
gimes. An experimental observation of the predicted
hancement of the decay rate in the elastic quantum reg
H.

v.
d
ys

-
-
e

would give further evidence for macroscopic quantum tu
neling in these systems.
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