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Multimode mediated qubit-qubit coupling and dark-state symmetries in circuit
quantum electrodynamics
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Microwave cavities with high quality factors enable coherent coupling of distant quantum systems. Virtual
photons lead to a transverse interaction between qubits when they are nonresonant with the cavity but resonant
with each other. We experimentally investigate the inverse scaling of the interqubit coupling with the detuning
from a cavity mode and its proportionality to the qubit-cavity interaction strength. We demonstrate that the
enhanced coupling at higher frequencies is mediated by multiple higher-harmonic cavity modes. Moreover, we
observe dark states of the coupled qubit-qubit system and analyze their relation to the symmetry of the applied
driving field at different frequencies.
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I. INTRODUCTION

Experiments on single photons coupled strongly to single
(artificial) atoms [1] allow for in-depth studies of photon-
atom interactions on a single-particle level. This has been
demonstrated with atoms coupled to microwave [2,3] and
optical cavity fields [4,5]. In solids, strong coupling has been
achieved with both quantum dots [6,7] and superconducting
circuits [8]. The coherent exchange of energy between photons
and atoms can be described in this diverse set of different
physical systems by a generic model named after Jaynes and
Cummings [9].

In circuit quantum electrodynamics (QED) experiments
[8,10], superconducting quantum circuits are coupled to single
microwave photons in a planar transmission line cavity. In this
configuration, coupling strengths exceed decay rates by two
orders of magnitude, and strong resonant coupling between a
microwave cavity and a single [8,10–13] or multiple [14,15]
superconducting qubits has been observed. In the case of
finite detuning between a single qubit and a resonator mode,
energy exchange between the individual systems is strongly
suppressed due to energy conservation. In this dispersive
regime, a residual interaction mediated by virtual photons
induces a finite Lamb [16] and ac Stark shift [17] of the
energy levels. For two qubits coupled to a common cavity
field, the same mechanism leads to an interaction between the
qubits [18,19] as experimentally demonstrated in [20]. This
coupling has a similar form as the J coupling of interacting
nuclear spins in nuclear magnetic resonance experiments
(e.g., [21,22]). In contrast to local interactions, such as the
direct coupling of superconducting quantum circuits [23–29],
the coupling mediated via virtual resonator photons allows
for a long-range interaction between two or more distant
superconducting qubits. In the context of quantum information
processing in the circuit QED architecture [30,31], it can be
used to realize two-qubit gates [18].

In this paper we measure the qubit-qubit coupling as
a function of detuning of two qubits considering a single
or multiple resonator modes and characterize the symmetry
properties of the coupled system. In Sec. II the interqubit
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coupling mechanism and its spectroscopic measurement is
outlined. In Sec. III the coupling near a single resonator
mode is analyzed. In Sec. IV higher-harmonic modes of the
transmission line resonator are included in the analysis. The
formation of a dark state at the avoided level crossing and
its relation to the drive symmetry is discussed in Sec. V.
Two-photon transitions from the ground to the doubly excited
state observed only at qubit resonance are analyzed in Sec. VI.

II. DISPERSIVE QUBIT-QUBIT COUPLING MECHANISM

In our experiments two superconducting qubits are dis-
persively coupled to a microwave cavity; see Fig. 1. The
quantum circuits are realized as weakly anharmonic transmon
qubits [32] and the cavity is formed by a coplanar-waveguide
resonator supporting several harmonic modes [33]. In the
dispersive regime, the detuning �
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is obtained by adiabatically eliminating the direct qubit-
resonator interaction of the qubits for each harmonic mode
aj in the Jaynes-Cummings Hamiltonian [18]. The first term
in Eq. (1) describes the resonator modes aj at integer multiples
of the fundamental frequency, ωj = (j + 1)ω0, shifted by
the cavity pulls χ

(i)
j = (g(i)

j )2/�j [18,35]. The second term

denotes the qubit Hamiltonian comprising the Lamb shift χ
(i)
j

of the qubit transition frequency due to the presence of virtual
photons [16]. An effective qubit-qubit coupling, a flip-flop
interaction, is also mediated by virtual photon exchange.
This mechanism is called J coupling, or transverse exchange
coupling, and is described by the third term of the Hamiltonian
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FIG. 1. (Color online) (a) Coplanar waveguide resonator coupled
via finger capacitors Cκ to input and output transmission lines. Two
transmons are capacitively coupled to the resonator at its ends (Cg).
Additional ac-signal lines are capacitively coupled to the qubits (not
used in the experiments). (b) Optical micrograph of a transmon qubit.
(c) Schematic of the measurement setup. The state of the qubit is
determined by measuring the transmission of the RF signal through
the transmission line cavity modeled as an LCR oscillator. When
a spectroscopy signal (Spec) is resonant with a qubit transition,
the resonance frequency of the cavity is shifted and the change in
transmission amplitude is recorded at the analog-digital converter
(ADC) after down-conversion with a local oscillator (LO) [34]. The
qubit frequencies can be tuned independently with superconducting
coils (SC Coil 1 or 2).
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In a different context this interaction has been used to entangle
two Rydberg atoms crossing a nonresonant cavity [36,37].

The J coupling in Eq. (2) leads to an avoided level crossing
of the excited qubit states [20]. At resonance between the
qubits, where δq ≡ ω(1)

ge − ω(2)
ge = 0, the size of the splitting

is 2J = h̄
∑

j 2g
(1)
j g

(2)
j /�j . The new eigenstates are the sym-

metric triplet states |gg〉, |ee〉, and |ψs〉 = (|ge〉 + |eg〉)/√2,
as well as the antisymmetric singlet state |ψa〉 = (|ge〉 −
|eg〉)/√2; see Fig. 2(a). In the maximally entangled states
|ψs/a〉 a single excitation is shared between the two qubits.
More generally, for δq �= 0 the eigenstates of the Hamiltonian
in Eq. (1) can be parametrized as

|ψs〉 = sin θm|eg〉 + cos θm|ge〉,
(3)

|ψa〉 = cos θm|eg〉 − sin θm|ge〉,
with the mixing angle θm determined by cos 2θm =
−δq/

√
4J 2+δ2

q and sin 2θm = 2J/
√

4J 2+δ2
q . The separable qubit

states |eg〉 and |ge〉 are asymptotically realized, |ψa〉 → |eg〉
and |ψs〉 → |ge〉, for large qubit-qubit detunings (δq → ∞),
as indicated in Fig. 2(b).

Note that, for identical transmon qubits, all higher-energy
eigenstates split simultaneously and the level crossing can
be treated similarly. Diagonalizing the Jaynes-Cummings
Hamiltonian including five transmon levels leads, however,
to corrections of the magnitude J of 1% only. Moreover, since
higher transmon levels are not populated in our experiments,
they are neglected in the following.

We have performed two sets of experiments using samples
with different parameters listed in Table I. In these experi-
ments, the energy spectrum of the coupled qubits is probed
by monitoring the transmission through the resonator while
applying a spectroscopy tone at frequency ωd [17]. For the
spectroscopy measurement shown in Fig. 2 (b), the second
qubit frequency ω(2)

ge is kept fixed and the first qubit frequency
ω(1)

ge is swept across the avoided crossing by changing its flux
bias using external coils. The value of J can be extracted from
a fit of the upper and lower branch of the avoided crossing to
the function

f
(
ω; ω(2)

ge ,J
) = ((

ω + ω(2)
ge

) ±
√(

ω
(2)
ge − ω

)2 + 4J 2
)/

2,

(4)
where ω is in this parameter regime an approximately linear
function of the flux 	 threading the first qubit loop. The fit
parameters are the transition frequency ω(2)

ge of the second qubit
and the coupling strength J . Both are determined with a preci-
sion of typically better than 0.5 MHz. In this particular example
we find ω(2)

ge /(2π ) = 5.210 GHz and J/(2π ) = 10.06 MHz.
Two additional features are observed in Fig. 2(b). First, an

extra spectroscopic line centered between the upper and the
lower branch appears at higher drive powers. This is a signature
of a two-photon transition from the ground state |gg〉 to the
doubly excited state |ee〉 of the coupled qubit system that
is allowed only when both qubits are in resonance. This is
discussed further in Sec. VI. As a second feature, the upper
branch shows a transition to a dark resonance at the avoided
crossing, which can be explained by the symmetry of the states
with respect to the spectroscopic drive, as discussed in Sec. V.

TABLE I. Parameters of samples A and B as determined from
independent measurements. ω0 denotes the fundamental frequency,
κ the cavity decay rate, E

(1,2)
C the charging energy, E

(1,2)
J the

maximum Josephson energy, and g
(1)
0 and g

(2)
0 the coupling strength

to the fundamental cavity mode of qubits 1 and 2, respectively.

Parameter Sample A Sample B

ω0/(2π ) 6.44 GHz 3.34 GHz
κ/(2π ) 1.57 MHz 1.91 MHz
E

(1)
C /h 232 MHz 148 MHz

E
(2)
C /h 233 MHz 153 MHz

E
(1)
J /h 35 GHz 409 GHz

E
(2)
J /h 38 GHz 375 GHz

g
(1)
0 /(2π ) 133 MHz 43 MHz

g
(2)
0 /(2π ) 134 MHz 42 MHz
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FIG. 2. (Color online) (a) Energy level diagram of two transversely coupled qubits. (b) Spectroscopic measurement of the avoided level
crossing in sample A as a function of normalized flux 	/	0 threading the first qubit loop with the second qubit at a fixed frequency. The solid
lines indicate energy levels calculated from a diagonalization of the two-qubit Jaynes-Cummings Hamiltonian. (c) Experimentally extracted
value of the coupling strength J as a function of qubit frequency (circles). Lines indicate calculated values of J (ωge) for a model including
one resonator mode with frequency-independent (thin solid gray line) or frequency-dependent coupling strength (dashed red line). Theoretical
predictions including four (thick solid green line) and five resonator modes (dotted blue line). The thin solid black line comprises finite-size
effects of the transmons using 60 resonator modes.

III. COUPLING TO THE FUNDAMENTAL
RESONATOR MODE

According to Eq. (2) the coupling J = h̄g(1)g(2)/� scales
inversely with the detuning � = �(1) = �(2), considering only
a single resonator mode. We have spectroscopically measured
the avoided crossing between the two qubits by varying the
detuning � from the fundamental mode of the resonator of
sample A. The corresponding sample parameters are listed
in Table I. The measured values of J shown in Fig. 2(c) are
determined for each detuning from a fit as described in Sec. II.

Considering only the relevant resonator mode closest in
frequency with constant g, the strength of the interqubit
coupling is expected to be symmetric about the resonator
frequency [Eq. (2); thin gray line in Fig. 2(c)]. The asymmetry
in the data can partly be accounted for by including the
frequency dependence of the coupling g, as explained in
Appendix A. It follows from the transition matrix elements that
J scales approximately linearly with the transition frequency
ωge of the qubits. This scaling leads to an asymmetry of the J

coupling around the resonance frequency ω0 that improves
the agreement with the data [dashed red line, Fig. 2(c)].
To verify that the remaining discrepancy does not originate
from the dispersive approximation, we have determined
J also by numerically diagonalizing the full generalized
Jaynes-Cummings Hamiltonian (not shown). This calculation
agrees with the dispersive model within the errors of the
experimentally observed values of J .

To achieve a better agreement, higher harmonics of the
resonator have to be considered. Similarly, the consideration
of higher-order transverse modes in optical cavities have
led to improved understanding of cavity QED experiments
with Bose-Einstein condensates (BECs) [38]. The particular
implementation of our resonator as an open-ended coplanar
waveguide supports higher harmonics at integer multiples of
the fundamental frequency [33], see Fig. 3(a). Each of these
higher modes provides a channel for the exchange of virtual
photons between the qubits determined by the detuning �

(i)
j

and the coupling g
(i)
j to the harmonic mode j as indicated

in Fig. 3(b). Above the fundamental mode, the coupling to
the first harmonic mode j = 1 contributes significantly to
the qubit-qubit coupling, which results in an asymmetry with
respect to the detuning. Including four modes in Eq. (2) to
determine the expected value of J , good agreement with data
is obtained [thick green line, Fig. 2(c)].
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FIG. 3. (Color online) (a) Spatial mode structure of a coplanar
waveguide resonator. Qubits are positioned at opposite ends of the
λ/2 resonator with coupling of alternating sign, g(1)

j = (−1)j+1g
(2)
j to

the j th resonator mode at frequency ωj . (b) Energy level diagram and
coupling scheme for two qubits with transition frequencies ω(1)

ge and
ω(2)

ge coupled to a transmission line cavity with fundamental frequency
ω0. Energy levels with a photon in the j th resonator mode (gg1j ) or
a qubit excitation (ge0 or eg0) are shown. The interaction strength J

depends on the detunings �
(i)
j and the coupling strengths g

(i)
j of both

qubits (i = 1,2) to the resonator mode j .
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It is important to also consider the alternating sign of the
electric fields at the qubits’ position. As depicted schematically
in Fig. 3(a), the electric field of the fundamental and higher
even modes (j = 0,2,4, . . .) always have opposite sign (i.e.,
a relative phase of π ) at either end of the microwave cavity,
whereas odd modes (j = 1,3,5, . . .) have equal sign. Thus,
higher harmonics add with different signs to the effective
coupling strength.

A priori, the sum in Eq. (2) has to be extended over all
modes. The sum does, however, not converge, as discussed
also in the context of Purcell-limited qubit decay rates in [39].
The proportionality of the coupling g

(1)
j g

(2)
j ∝ ωj = (j + 1)ω0

Eq. (A2) together with the same proportionality of the detuning
�j ∝ (j + 1)ω0 for large j leads to an nonconverging series
alternating between the two values

Jeven = h̄

2k∑
j=0

(−1)j+1
g2

j

�j

and Jodd = h̄

2k+1∑
j=0

(−1)j+1
g2

j

�j

. (5)

Apparently, a cutoff frequency has to be imposed to obtain
physical results. In Fig. 2(c) we have also included a plot
of Jeven when terminating the sum at the fourth harmonic
(k = 2, the fifth mode; dotted blue line). It is observed
that the difference between an even and odd number of
modes is significant—up to 25% of the coupling strength.
We have verified that this is not an artifact of the dispersive
model by numerically diagonalizing the Jaynes-Cummings
Hamiltonian.

In summary, in this set of measurements we observe
enhancement of the J coupling, inversely proportional to the
detuning of the qubits to the cavity mode. The asymmetry
around the mode is attributed to higher harmonic modes
that contribute to the measured (renormalized) J . However,
to compute the coupling strength the number of included
modes has to be restricted by imposing a high-frequency
cutoff. Note that these considerations also affect a precise
determination of Lamb and ac Stark shifts, if the multimode
structure is to be accurately considered. Physically, there are
several mechanisms conceivable. First, the electric field across
the transmon averages out when the wavelength of the photons
becomes comparable to the size of the transmon (∼300 µm) at
a frequency of about 400 GHz, determined by the propagation
velocity ceff = c/

√
εeff (εeff = 5.5) of light in the transmission

line. This finite size effect leads to convergence of Eqs. (5)
at about 60 resonator modes [thin black line in Fig. 2(c)].
Second, the energy needed to overcome the pairing interaction
of Cooper pairs sets an upper frequency of about 700 GHz for
niobium. Also, radiation- or dielectric-loss mechanisms and
the photon loss rate through the coupling capacitors increase at
higher frequencies [39]. Our current experiments are, however,
not designed to work at frequencies higher than approximately
15 GHz. The exploration of a much wider frequency range will
require an elaborate circuit architecture and will be challenging
with current technology.

IV. MULTIMODE COUPLING

To analyze the coupling to higher-order modes, we measure
the qubit-qubit coupling strength J as a function of qubit
transition frequency in a second sample B over a broader

frequency range. In this sample the frequency of the funda-
mental resonator mode is lower, ω0/(2π ) = 3.34 GHz, and
the maximal Josephson energy EJ is higher by about one
order of magnitude (see Table I, sample B). As a result, the
qubit transition frequency can be swept over several resonator
modes.

The measured interqubit coupling strength shows an
enhanced value around each harmonic mode, as well as
an overall increase with frequency (Fig. 4) in agreement
with the discussion in Sec. III. A calculation based on the
dispersive Jaynes-Cummings Hamiltonian can explain the data
qualitatively. However, including an even (N = 6, solid red
line) or odd (N = 7, dotted blue line) number of resonator
modes yields again significant differences in the calculated
value of J , with neither of the curves resulting in good
quantitative agreement.

The resonator modes discussed so far cannot fully explain
the measured frequency dependence of the interqubit coupling.
Large deviations located around ∼8.5 GHz and ∼12 GHz
(Fig. 4) hint at a coupling mechanism mediated by a different
set of modes at these frequencies. The asymmetrically modi-
fied coupling strength between every two resonances suggests
harmonic antiresonances that mediate qubit-qubit coupling
channels of similar magnitude as the coplanar waveguide
resonance. Due to interference, these lead to an enhancement
or suppression of the qubit-qubit coupling at intermediate
frequencies.

To account for these spurious resonances, additional field
modes are included in the model. Treating these modes
equivalently to the coplanar waveguide modes in the derivation
of the dispersive multimode Jaynes-Cummings Hamiltonian
(1) results in an extra contribution J̃ to the qubit-qubit
coupling,

Jtot = J + J̃ = J + 1

2

M∑
l

g̃
(1)
l g̃

(2)
l

(
1

�̃
(1)
l

+ 1

�̃
(2)
l

)
.

Jtot is then fit to the data in Fig. 4 assuming that the
coupling strengths of both qubits are equal in magnitude,
|g̃(1)

l | = |g̃(2)
l |. The qualitative agreement to the measured

values of J is considerably improved by including four extra
modes (l = 1,2,3,4); see dashed green line in Fig. 4. From
the fit we obtain the resonance frequencies ω̃1,2,3,4/(2π ) ≈
{5.2, 8.4, 11.9, 14.8} GHz. Note that these additional modes
are not observed in transmission measurements [33] of the
resonator and their frequencies can therefore not be deter-
mined independently. Further insight in the nature of these
modes is gained by comparing the coupling strengths to the
spurious modes g̃

(i)
l with the coupling strength to the coplanar

waveguide modes g
(i)
l . The ratios g̃

(i)
l /g

(i)
l for l = 1,2,3,4

are determined to be {1(1), 0.5(2), 0.8(2), 0.7(1)}. They are
of similar size, hinting at a highly localized field of the
spurious mode with small effective mode volume. Moreover,
an alternating relative sign between the couplings of the qubits
to the spurious modes, |g̃(1)

l | = (−1)l+1|g̃(2)
l |, with the mode

number l = 0,1, . . . has to be imposed to obtain agreement
between fit and data. As a consequence, the field amplitude
of the spurious modes has—like the the coplanar waveguide
mode outlined in Fig. 3—either equal or opposite direction
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FIG. 4. (Color online) Qubit-qubit coupling strength J versus qubit frequency in sample B. The vertical lines indicate the frequencies of the
coplanar waveguide modes ωj . Experimental data (dots) confirm the expected increase of J with increasing frequency. The solid red (dotted
blue) line is the calculated J including N = 6 (N = 7) resonator modes. The dashed green line is a fit to a model with additional resonances.

at the position of the qubits. This analysis provides strong
evidence that the spurious modes can be identified physically
as the slotline modes of the transmission line, a differential
excitation of the left and right ground plane [40].

The measured values of the coupling strength J demon-
strate the sensitivity of the qubit-qubit coupling to the full mode
structure of the circuit. While a single-mode model is sufficient
to describe the coupling around a single resonance, quantitative
predictions require complete knowledge of designed and
spurious resonances. Appropriate circuit design and use of
wire bonds or air bridges connecting ground planes on the chip
can suppress spurious modes, but have not been implemented
in this sample. In contrast, additional resonances can also
be incorporated on purpose into the circuit design [41,42] to
modify the qubit-qubit coupling at certain frequencies.

V. DARK STATES

A characteristic feature of the avoided level crossing is a
dark resonance, at which the transition from the ground state to
the upper energy branch is forbidden and, as a result, no signal
is observed in spectroscopy measurements; see Fig. 2(b). In
fact, the symmetry of the states at the avoided crossing leads to
a selection rule with respect to the spectroscopic drive applied
to resonator described by [18,20]

Hd = ε

�d

(g(1)σ
(1)
+ + g(2)σ

(2)
+ ) + H.c., (6)

where ε denotes the drive strength. This expression is written
in the frame rotating at the drive frequency ωd , and, for
simplicity, only the dominant resonator mode with smallest
detuning |�d | ≡ minj (|ωj − ωd |) is taken into account.

To fully understand the relation between drive and
state symmetry, we decompose the eigenvalues of the disper-
sive Hamiltonian (1) into triplet states and a singlet state. These
are the eigenstates of the permutation operator Eq. (B1) to the
eigenvalue ±1. Explicitly, the triplet states |gg〉 (ground state),
|ee〉 (doubly excited state), and the symmetric state (|ge〉 +
|eg〉)/√2 span the symmetric subspace, whereas the singlet
state (|ge〉 − |eg〉)/√2 is antisymmetric under permutation
of the qubits. This is equivalent to a decomposition of the
system into a spin-1 and spin-0 particle. The sign of the
coupling constants g(i) determines the drive symmetry. Equal
(opposite) sign of the electric field at the position of the two
qubits leads to the positive (negative) sign of the second

term in Eq. (6) and, consequently, to a(n) (anti)symmetric
excitation. For equal sign of the couplings, the drive term and
the permutation operator commute (symmetric drive). Then,
only transitions between states of the same symmetry are
allowed (see Appendix B) and the antisymmetric state stays
dark at zero detuning. Vice versa, for opposite sign of the
couplings the now antisymmetric drive can connect symmetric
to antisymmetric states.

In our experiments the symmetry of the drive is determined
by the frequency of the microwave signal and the distance
d between the qubits. The relative sign of the field at the
qubit positions xi is determined by the phase difference �φ =
φ(x1) − φ(x2) = ωdd/ceff between the qubits. Here, we have
used the dispersion relation kd = ωd/ceff with the propagation
velocity ceff of light in the transmission line. As the qubits
are located at the end of the transmission line resonator, d is
approximately the length of the resonator lres and sign changes
occur at frequencies ωd = sπceff/(2lres) with s = 1,3,5, . . .,
in between two resonances as indicated by the dotted lines in
Fig. 3(a).

Whether the eigenstate with lower or higher energy is dark,
depends—in the simplest model with only a single dominant
resonator mode—on the qubit-resonator detuning. The higher
(|ψ+〉) and lower (|ψ−〉) energy eigenstate of the Hamiltonian
(1) at the avoided crossing can, according to Eq. (3), be written
as ψ± = (|ge〉 ± sgn(J )|eg〉) /

√
2. Note that, in this notation,

the subscript denotes higher (+) or lower (−) energy and not
the symmetry of the state. In Fig. 5 the energy levels of the
coupled resonator-qubits system are plotted as a function of
the qubit transition frequencies, which are kept equal, along
with their respective symmetries. For a coupling to the first-
harmonic mode we find J = g

(1)
1 g

(2)
1 /�1 < 0 below the mode

(�1 < 0, g
(1)
1 g

(2)
1 > 0) and J > 0 above the mode (�1 > 0,

g
(1)
1 g

(2)
1 > 0). Consequently, below the first harmonic mode the

higher-energy state ψ+ is the antisymmetric singlet state. This
state cannot be excited from the ground state with a symmetric
drive and stays dark [Fig. 5(b), region A]. At the avoided
crossing with a resonator mode the lower- and higher-energy
qubit state swap their symmetry due to the sign change of the
detuning. Since the drive does not change its symmetry, the
dark and bright state energies are also interchanged and the
dark state appears at the lower branch [Fig. 5(b), region B].
The dark state is always closer in frequency to the resonator
transition.
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FIG. 5. (Color online) (a) Energy levels of the qubit-resonator
system when the qubits are degenerate and their transition frequencies
are simultaneously swept across the resonator modes. The parameters
are those of sample B (Table I). (b) Spectroscopic measurements of
the anticrossing in the regions labeled A, B, C, and D in (a).

If the second-harmonic mode dominates the coupling, the
situation is reversed since the coupling constants have different
signs. Below this mode, the ψ+ (higher energy) state is
symmetric, and ψ− (lower energy) is antisymmetric. Still, the
dark state appears at the upper branch of the avoided crossing
[Fig. 5(b), region C] and switches to the lower branch above
the resonator [Fig. 5(b), region D]. The reason is that the
drive symmetry changes as well between two resonator modes
as explained above, implying that the drive field changes
from a symmetric (around the first-harmonic mode) to an
antisymmetric drive (around the second-harmonic mode). The
drive can then induce transitions between the ground and
an antisymmetric state ψ−, but not to the symmetric state
ψ+ of the upper branch. The various conditions leading to
the identification of the dark state branch are summarized in
Table II. In particular, if the drive (line 4) has a symmetry
different from the higher energy state ψ+ (line 3), ψ+ remains
dark.

VI. TWO-PHOTON TRANSITION

The spectroscopic line between upper and lower branch
of the avoided level crossing in Fig. 2(b) is a two-photon
transition from the ground state |gg〉 to the doubly excited
state |ee〉. This transition has also been observed in a phase
qubit coupled coherently to a two-level fluctuator in the tunnel

TABLE II. Symmetry considerations leading to the dark state
at the lower- or upper-energy branch of the avoided level crossing.
⊕ (�) denotes a positive (negative) value or symmetry. The sign of
the coupling strength J = g

(1)
j g

(2)
j /�j in row 3 defines the symmetry

of the higher-energy state ψ+. The product with the drive symmetry
(row 4) then determines the dark state (row 5).

Region A B C D

g
(1)
j g

(2)
j ⊕ ⊕ � �

�
(1,2)
j � ⊕ � ⊕

J =̂ ψ+ symm. � ⊕ ⊕ �
drive symm. ⊕ ⊕ � �
dark state ψ+ ψ− ψ+ ψ−

barrier of the Josephson junction comprising the qubit [43]
and in molecular spectroscopy of two nearby molecules [44]. It
becomes visible only at the center of the avoided level crossing;
again a manifestation of the symmetry properties of the system.
The rate of the corresponding two-photon transition [45]

� = 2π

h̄4

∣∣∣∣∣
∑
m

〈ee|Hd |m〉〈m|Hd |gg〉
ωm − ωd

∣∣∣∣∣
2

δ(ωee − 2ωd )

is given by a sum over the intermediate states m. Off the
avoided crossing the qubits are effectively decoupled. In this
case the intermediate states are m = ge,eg. The transition
is then prohibited due to destructive interference between
the two possible paths, gg ↔ eg ↔ ee or gg ↔ ge ↔ ee,
connecting the ground to the doubly excited state. Due to the
opposite sign of the detunings ωge/eg − ωd , the two terms in
the sum cancel and the transition rate � = 0. With the qubits
at resonance, the intermediate states are m = ψ+,ψ− and one
term in the sum vanishes due to the forbidden transition to
the dark state. With only one possible path connecting the gg

to the ee state, no interference takes place and the transition
is allowed. The enhanced transition rate can potentially be
employed for directly creating the maximally entangled state
|φ〉 = (|gg〉 + |ee〉)/√2.

VII. CONCLUSION

We have analyzed the coupling between two distant qubits
mediated by the harmonic modes of a resonator. We have
observed an overall increase of the qubit-qubit coupling
with frequency as expected from a model including higher-
harmonic modes of the coplanar waveguide resonator. Good
qualitative agreement over a wide frequency range between
the dispersive model and experimental data is obtained when
taking spurious resonances of the coplanar waveguide in
addition to the coplanar waveguide modes into account.
Hence, measurements of the transverse interqubit coupling
can be employed to detect and investigate spurious global
coupling channels between distant qubits, complementary to
measurements of single qubit spectra used to detect spurious
local resonances [46,47]. How many higher-harmonic modes
to include in the theory (i.e., where to set a high-frequency
cutoff) can, however, not be decided on the basis of current
measurements.
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In addition, we have observed dark states and enhanced
two-photon absorption at the avoided level crossing in spectro-
scopic measurements. These characteristic features are based
on the relation between the symmetry of the drive and the
singlet and triplet states formed by the coupled qubits, which
also explains the dark state at either the lower- or higher-energy
branch. These symmetries also affect decay processes of
singlet and triplet states and, together with the nontrivial
environment formed by the microwave resonator, dissipative
dynamics of separable and entangled states can be studied.
The J coupling can also be useful for building two-qubit
gates when fast flux pulses are applied to tune the qubits into
resonance. In the context of quantum information processing,
the resulting SWAP gate forms a universal two-qubit gate with
short operation times. Moreover, the J -coupling mechanism
described in this article mediates the interaction not only
between two, but also an arbitrary number of distant qubits;
an interesting playground for studies of collective phenomena
with superconducting circuits, where the interaction is not
restricted to nearest neighbors.
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APPENDIX A: FREQUENCY DEPENDENCE OF THE
QUBIT-RESONATOR COUPLING

The coupling g to the resonator is proportional to the rms
voltage fluctuations of the vacuum field V 0

rms at the position of
the ith qubit and to the off-diagonal matrix element [10,32] of
the charge operator n̂,

g = 2eβV 0
rms〈g|n̂|e〉. (A1)

The prefactor β is determined by the geometry of the circuit
used in the experiments. In the large EJ /EC limit realized in
our devices, the matrix element is proportional to the square-
root of the qubit transition frequency; 〈g|n̂|e〉 ∝ √

ωge. The
vacuum voltage fluctuations V 0

rms are proportional to the square
root of the mode frequency;

√
ωj = √

(j + 1)ω0 [1,10].
For a single qubit on resonance with the j th resonator

mode ωge = (j + 1)ω0 and the scaling of the qubit-resonator
coupling is approximately linear in the mode number, g ∝
(j + 1)ω0. To verify the linearity of the coupling strength we
have measured the vacuum Rabi splitting of a single qubit up to
the third-harmonic resonator mode [Fig. 6(a)] using qubit 2 of
sample B (for the parameters, see Table I). The simple estimate
shows good agreement with the measured coupling strengths
g

(2)
0,1,2,3/(2π ) = {42, 84, 125, 162}MHz [dashed green line in

Fig. 6(a)]. The parameter β = 0.20, obtained from a linear fit
to the analytic model in the large EJ /EC limit [32], agrees
with the designed value within 10%. A numerical simulation
of the transmon including four energy levels can explain
also the slight deviations from the linear dependence at high
frequencies [solid red line, Fig. 6(a)].
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FIG. 6. (Color online) (a) Coupling strength g
(2)
j of qubit 2 to

the j th harmonic mode in sample B. (b) Expectation value of the
permutation operator P for the eigenstates of the dispersive Jaynes-
Cummings Hamiltonian as a function of qubit-qubit detuning δq . (c)
Observed shift |δq | of the dark state relative to qubit-qubit resonance.
The calculated shift due to an asymmetric field distribution of the
driven transmission line at the qubit positions is indicated by the
solid line.

In the case of two resonant qubits with identical coupling
strength to the j th harmonic mode, the strength of the J

coupling is, according to Eq. (2), linear in the qubit transition
frequency ωge and the mode frequency (j + 1)ω0,

J ∝ g
(1)
j g

(2)
j ≈ g2

j ∝ ωgeωj = (j + 1)ωgeω0. (A2)

When the detuning of the qubits to the resonator mode is
varied, the frequency (j + 1)ω0 of the j th resonator mode
is constant and J scales proportional to the transition
frequency ωge.

APPENDIX B: DARK STATE SYMMETRY

The spectroscopic drive Hd ∝ (σ (1)
+ − σ

(2)
+ ) + H.c. [18]

anticommutes with the permutation operator

P ≡ (σ (1)
+ σ

(2)
− + σ

(2)
+ σ

(1)
− ) + (

1 + σ (1)
z σ (2)

z

)
/2, (B1)

[Hd,P ]+ ≡ HdP + PHd = 0. (B2)

This relation can be fulfilled only if the drive transforms a
symmetric (ψs) to an antisymmetric (ψa) state, or vice versa,
such that

[Hd,P ]+ ψs = HdPψs + PHdψs

= Hdψs + Pψa

= ψa − ψa = 0. (B3)

The symmetry of the coupled qubit states [see Fig. 2(a)] can
be characterized by the corresponding expectation value of
the permutation operator 〈P 〉. 〈P 〉 is unity for the |gg〉 and
the |ee〉 state (i.e., the |gg〉 and |ee〉 states are symmetric
for all detunings). For the symmetric and antisymmetric
states ψs and ψa formed at zero qubit-qubit detuning, 〈P 〉
is 1 or −1 indicating that these states are eigenstates of P

with well-defined symmetry. For nonzero detuning between
the qubits, δq �= 0, the eigenstates of the Hamiltonian (1)
do not have well-defined symmetry and 〈P 〉 asymptotically

063827-7



S. FILIPP et al. PHYSICAL REVIEW A 83, 063827 (2011)

approaches zero for large detunings [Fig. 6(b)]. Hence, no
strict selection rules are imposed off the level crossing and
the transition between ground state and single excited states
is allowed. Similar considerations hold for a symmetric drive
∝ σ

(1)
+ + σ

(2)
− .

APPENDIX C: RELATIVE POSITION OF THE DARK STATE

It is observed (see Fig. 2) that the frequency of the dark
state is shifted away from the center of the avoided crossing.
In fact, for given drive term Hd (6) the dark state |ψdark〉 is
defined by the condition

〈gg|Hd |ψdark〉 = 0. (C1)

Both a change in the symmetry of the state and in the symmetry
of the drive can lead to a shift in frequency of the observed
dark state. In our devices, where the coupling strengths |g(1)| ≈
|g(2)| are approximately equal, the observed shift of the dark-
state frequency originates from an asymmetry of the drive.

Assuming the contrary (i.e., a perfectly antisymmetric
drive), it immediately follows from Eq. (C1) that the dark state
is the symmetric triplet state, |ψdark〉 = |ψs〉. According to
Eq. (3), this state is realized at qubit-resonance with
δq = 0, thus no shift of the dark-state position is expected. To
account for the slight asymmetry α ≡ g(2)/g(1) in the coupling
strengths the dark state condition in Eq. (C1) can be written in

terms of the mixing angle θm (Eq. (3)) as

tan θm(δq) = 1/α, (C2)

using Eq. (6) at equal qubit detuning. The asymmetry in the
coupling of α ≈ 0.99 for sample A leads—for the parameters
from Fig. 2(b)—to a shift of only 200 kHz and does not account
for the observed shift of 8 MHz. Similar considerations hold
for sample B with an asymmetry αB ≈ 1.02. We have also
verified by a numerical diagonalization of the full Jaynes-
Cummings Hamiltonian that the modification of the state
symmetry due to higher-harmonic modes cannot explain the
observed dark-state shift. Therefore, the shift must be caused
by an asymmetry in the drive.

In fact, the field amplitude inside an asymmetrically driven
(ideal) transmission line resonator of length lres is given by
f (x) = cos[ω(x − lres)/ceff] such that a voltage antinode is
retained at its undriven port at x = lres. The position-dependent
field modifies the coupling strength of the individual qubits
to the drive in Eq. (6) to f (xi)g(i) resulting in an effective
coupling asymmetry α = f (d)/f (0) and a shift of the observed
dark state δq according to Eq. (C2). With the qubits located
at either end of the resonator, x1 = 0 and x2 = lres this simple
estimate leads to a qualitative agreement with the observed
shifts of the dark state; see Fig. 6(c). For better agreement, a
refined model has to take the field amplitude at the qubits’
position given by the actual geometry of the circuit into
account.
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