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A wide range of experiments studying microwave photons localized in superconducting cavities have

made important contributions to our understanding of the quantum properties of radiation. Propagating

microwave photons, however, have so far been studied much less intensely. Here we present measure-

ments in which we reconstruct the quantum state of itinerant single photon Fock states and their

superposition with the vacuum by analyzing moments of the measured amplitude distribution up to

fourth order. Using linear amplifiers and quadrature amplitude detectors, we have developed efficient

methods to separate the detected single photon signal from the noise added by the amplifier. From our

measurement data we have also reconstructed the corresponding Wigner function.
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The quantum properties of microwave frequency
photons localized in space are typically investigated in
the context of cavity quantum electrodynamics (QED)
experiments with Rydberg atoms [1,2] or superconducting
circuits [3–5]. Propagating (itinerant) individual micro-
wave photons have been generated [6], but their quantum
properties have not yet been studied with the same inten-
sity. This is partly due to the fact that efficient single
photon counters in this frequency domain are still under
development [7]. However, recently it was shown that
characteristic quantum properties of propagating micro-
wave photons, such as antibunching, can be observed in
correlation measurements using linear amplifiers and
quadrature amplitude detectors [8,9]. In the context of
circuit QED [3,4], propagating microwaves are also used
to control [10] and readout the quantum state of artificial
atoms [11] and to observe phenomena such as resonance
fluorescence [12].

In general, the quantum state of any field mode a is
characterized by its density matrix � or an equivalent
quasiprobability distribution such as the Wigner, the
Husimi Q, or the Glauber-Sudarshan P function [13,14].
Less widely appreciated, the mode a is also equivalently
specified by the infinite set of its moments hðayÞnami [15].
In this work we use measurements of such field moments
up to fourth order to characterize single photon states.

In the optical domain many experimental techniques
exist to reconstruct the quantum state of light using square
law detectors [16]. In most instances, homodyne detection
schemes are used to record the statistical properties of
single quadrature components for different local oscillator
phases, known as optical tomograms, which allow for a
reconstruction of the Wigner function by an inverse Radon
transformation [17]. Alternatively, in heterodyne detection
schemes the joint statistics of two conjugate quadrature
components, described by the Husimi Q distribution, are
measured [18]. Both techniques allow for the full recon-
struction of the quantum state of a single field mode.

In the microwave domain linear amplifiers are used to
measure the amplitude of the signal instead of its intensity.
In this case, one can realize a homodyne detection scheme
using phase sensitive amplifiers. They ideally amplify only
one quadrature of the signal noiselessly while deamplify-
ing the other quadrature. However, state-of-the-art conven-
tional linear amplifiers are phase insensitive, amplifying
both quadratures of the signal equally while adding at least
the vacuum noise to the signal but usually much more.
Using these amplifiers heterodyne detection is realized
in our experiments, where conjugate quadratures are
measured simultaneously for a fixed local oscillator
phase [19,20].
Here we demonstrate photon state tomography using

such phase insensitive amplifiers in combination with het-
erodyne detection of both field quadratures. We first dis-
cuss the relation between the single propagating field mode
and the resonator mode acting as the photon source
(see Fig. 1). Then we describe a method to systematically
separate the signal from the noise using a single linear
amplifier chain. Similar methods have recently been dis-
cussed for a setup with two linear amplifier channels [21].
Finally, we use this method to reconstruct the Wigner
function of a single photon Fock state and its superposition
with the vacuum state.
We realize a single photon source in a circuit QED

setup employing a transmission line resonator of frequency
�r � 6:77 GHz coupled to a single transmon qubit with
vacuum Rabi rate 2g=2� � 146 MHz [9]. By tuning the
qubit prepared in a superposition state �jgi þ �jei into the
resonator for exactly half a vacuum Rabi period, we gen-
erate a single photon state �j0i þ �j1i [9,22]. The state
preparation time is short compared to the cavity decay time
� ¼ 1=� � 40 ns. We repeat the photon generation every
800 ns, which allows us to prepare approximately 4� 109

single photon states per hour.
The field generated in the resonator then decays into the

output mode aout related to the resonator mode A by the
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input-output boundary condition aoutðtÞ ¼
ffiffiffiffi
�

p
AðtÞ � ainðtÞ

[23], where ain is in the vacuum state; see Fig. 1.
We integrate the output signal over a weighted time
window fðtÞ to define a single time independent mode
a ¼ R

dtfðtÞaoutðtÞ. Considering the resonator dynamics

AðtÞ ¼ e��t=2Að0Þ þ ffiffiffiffi
�

p
e��t=2

R
t
0 d�e

��=2ainð�Þ [24], the

choice fðtÞ ¼ ffiffiffiffi
�

p
e���=2�ðtÞ, where �ðtÞ is the Heaviside

step function, leads to the identity a ¼ Að0Þ. Therefore,
a is in the same quantum state as the resonator at the
preparation time t ¼ 0.

To characterize the state of mode a we first pass the
signal through a phase insensitive amplifier chain with
effective gain G, which introduces an additional noise
mode h. The amplified signal is then split into two equal
parts and mixed with an in-phase and out-of-phase local
oscillator, respectively, to simultaneously detect the con-

jugate quadrature components X̂ and P̂. Consequently, X̂

and P̂ are related to a and h by

ffiffiffiffi
G

p ðX̂þ iP̂Þ ¼ ffiffiffiffi
G

p ðaþ hyÞ � Ŝ (1)

defining the complex amplitude operator Ŝ [8].
If the amplifier is quantum limited, i.e., the noise mode h

is in the vacuum state, it has been shown that the quantum
state at the amplifier output can be expressed in terms

of the Husimi Q function Qoutð
ffiffiffiffi
G

p
�Þ ¼ Qinð�Þ=G [25].

This implies that the Q function remains invariant under
the amplification process up to a scaling factor. Therefore

the measurement results of the operator Ŝ are distributed
as QoutðSÞ.

The best commercially available amplifiers for frequen-
cies below 10 GHz add thermal noise with an effective
temperature ofTnoise � 2 K and therefore are far frombeing
quantum limited. Typically, the noisemodeh is then in good
approximation in a thermal state represented by a Gaussian
phase space distribution. As shown in Ref. [26], the mea-

sured distribution of Ŝ at the amplifier output

D½��ðSÞ ¼ 1

G

Z
d2�Pað�ÞQhðS�=

ffiffiffiffi
G

p � ��Þ (2)

can then be interpreted as the convolution of the P function
of mode a and the Q function of the noise mode h.

We store the results of repeated measurements of Ŝ
(i.e., the instantaneous values of X and P) in a two-
dimensional histogram with 1024� 1024 entries, which
corresponds to a discretized version of the probability

distribution D½��ðSÞ. To extract the properties of mode a
alone we perform two measurements. One in which mode
a is left in the vacuum serving as a reference measurement

for the noise, where Pað�Þ ¼ �ð2Þð�Þ is a two-dimensional
Dirac � function [14], resulting in the distribution

D½j0ih0j�ðSÞ ¼ 1

G
QhðS�=

ffiffiffiffi
G

p Þ; (3)

and a second one in which the state of interest jc i, such as
a Fock state j1i, is prepared. In practice both histograms
are accumulated in an interleaved fashion, changing be-
tween the two cases every 25 	s to avoid systematic errors
due to drifts. The measured histograms for both vacuum

D½j0ih0j� and for a Fock state D½j1ih1j� are dominated by the
noise added by the amplifier; see Figs. 2(a) and 2(b).
However, when calculating the numerical difference of

FIG. 1 (color online). Simplified schematic of the experimen-
tal setup. An optical analog of the photon source realized in our
experiments is shown as a single sided cavity with one highly
reflective and one partially transmitting mirror. A single photon
is generated in the cavity by preparing the qubit in its excited
state when detuned from the cavity and then tuning it into
resonance with the cavity for half a vacuum Rabi period
�=2g. The photon is then emitted at a rate � into the output
mode aout resulting in an exponentially decaying envelope of the
single photon pulse while the mode ain remains in the vacuum
state. The signal is then amplified with effective gainG and noise
in mode h is added [8,19]. The amplified signal is down-
converted in a microwave quadrature mixer using a local oscil-
lator (LO). The two quadrature amplitudes X and P are recorded
using an analog-to-digital converter and stored in real time in a
two-dimensional histogram using field programmable gate array
electronics. An optical frequency analog of our measurement
scheme is discussed in detail in [8].

FIG. 2 (color online). (a) Measured quadrature histogram
D½j0ih0j�ðSÞ for a in the vacuum where S ¼ ffiffiffiffi

G
p ðX þ iPÞ. The

inset shows a horizontal cut through the histogram (thick red
curve). The distribution is well described by a normal distribu-
tion (thin blue curve) with width 
 ¼ 5:7 (indicated by black
arrows) corresponding to a system noise temperature of Tnoise �
21 K. (b) Quadrature histogram D½j1ih1j�ðSÞ for preparation of
single photon Fock states. (c) Difference of D½j1ih1j�ðSÞ and
D½j0ih0j�ðSÞ. Note the two different color scales, both given in
units of D½j1ih1j�ð0Þ, indicating the small difference between the
two histograms.
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both histograms, see Fig. 2(c), we already clearly observe
the circular symmetric character of the single photon phase
space distribution. The small deviation from an ideal cir-
cular symmetry is explained by a slight coherent admixture
of the vacuum j0i to the single photon Fock state j1i due to
small errors in the state preparation.

To further analyze the data we calculate the moments

hðŜyÞnŜmi� ¼
Z

d2SðS�ÞnSmD½��ðSÞ (4)

of the two histograms up to a given order that is chosen
to be nþm ¼ 4 in our experiments. This specific choice
is justified later in the text. When noise and signal are
uncorrelated the calculated moments correspond to the
operator averages

hðŜyÞnŜmi� ¼ GðnþmÞ=2 Xn;m
i;j¼0

m
j

� �
n
i

� �
hðayÞiaji

� hhn�iðhyÞm�ji; (5)

reducing to hðŜyÞnŜmij0ih0j ¼ GðnþmÞ=2hhnðhyÞmi when a is

in the vacuum state. Equation (5) can then be inverted to

calculate the moments hðayÞnami from hðŜyÞnŜmi� and

hðŜyÞnŜmij0ih0j up to the desired order, 4 in this case, as

shown in Fig. 3(a). We note that the quadrature histograms
are normalized such that the zeroth order moments are
always unity for all prepared states. The off diagonal
elements in the moment matrix express coherences be-
tween different photon number states. They vanish for
states with circular symmetric phase space distributions
such as pure Fock states or thermal states. For the Fock

state j1i [Fig. 3(a)], we observe that all off diagonal mo-
ments are close to zero. In addition, we note that the fourth
order moment hðayÞ2a2i is also close to 0, indicating
antibunching of the prepared single photon states [9]. In
contrast, a thermal state with the same mean photon num-
ber would display vanishing off diagonal moments but
finite diagonal fourth order moments. Experimentally, for
the single photon Fock state, the aforementioned residual
coherent admixture of the vacuum state leads to a non-
vanishing small mean amplitude jhaij ¼ 0:044 and a
slightly reduced mean photon number hayai ¼ 0:91. For
an integration time of 12 h for each state, we find errors of
the fourth order moments to be approximately�0:1 where
the statistical error in the moments is known to increase
exponentially with increasing order [8]. In comparison, the
estimated statistical errors for the first, second, and third
order moments are approximately 1:5� 10�3, 4:5� 10�3,
and 1:5� 10�2, respectively. The errors have been esti-
mated from the standard deviation of the moments ac-
quired in repeated measurements of the distributions.
We have also prepared and analyzed superposition states

of the type ðj0i þ ei�j1iÞ= ffiffiffi
2

p
; see Fig. 3(b). The relative

phase � is controlled by the phase of the corresponding
qubit state that is mapped into the resonator. For this class
of states, the mean amplitude ideally equals the mean
photon number jhaij ¼ hayai ¼ 0:5. The first equality re-
mains approximately valid even if the state is slightly
mixed with the vacuum. We have been able to use this
property to determine the effective gain G of our amplifier
chain because first and second order moments have a
different characteristic scaling with G. This allowed us to
scale X and P axes of the histograms (Fig. 2) such that they
correspond to the real and imaginary part of aþ hy. From
our measurement data, we extract jhaij ¼ 0:466, which is
close to the expected value.
To further confirm the validity of our scheme, we have

generated coherent states j�i with amplitude � ¼ 1 and
� ¼ 0:5 by applying 10 ns square coherent pulses with
controlled amplitude to the weakly coupled input port of
the resonator. The moments of coherent states are given by
hðayÞnami ¼ ð��Þn�m. For � ¼ 1 all moments are ob-
served to be close to 1 [Fig. 3(c)], as expected. This also
demonstrates that systematic errors in the detection chain,
such as small nonlinearities, are negligible since all mo-
ments take their expected values. For � ¼ 0:5 [Fig. 3(d)],
the measured moments decay exponentially with
hðayÞnami ¼ 0:5nþm, as expected. The fourth order mo-
ments appear larger than the third order ones, due to their
larger statistical error.
From the measured moments we have reconstructed the

Wigner function Wð�Þ for a single photon Fock state and
its superposition with the vacuum (Fig. 4). It is sufficient to
evaluate [1]

Wð�Þ ¼ X
n;m

Z
d2�

hðayÞnamið���Þm�n

�2n!m!
eð�1=2Þj�j2þ�������

0
1
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FIG. 3 (color online). Absolute value of the normally ordered
moments jhðayÞnamij up to fourth order for (a) a single photon
Fock state, (b) a superposition state ðj0i � j1iÞ= ffiffiffi

2
p

, and two
coherent states with amplitude (c) � ¼ 1 and (d) � ¼ 0:5.
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up to order nþm ¼ 3 because hðayÞ2a2i � 0. In general,
all higher order moments with nþm 	 2N � 1 have to be
zero if one diagonal moment hðayÞNaNi vanishes, which
follows from the fact that diagonal moments hkjðayÞnanjki
with n > k are zero for Fock states jki. The Wigner func-
tion of the single photon Fock state [Fig. 4(a)] shows clear
negative values which indicate the quantum character of
the observed state. The slight shift of jhaij ¼ 0:044 from
the phase space origin that we already observed in the raw
measurement data [Fig. 2(c)] of the j1i state is also appar-
ent in the reconstructed Wigner function. The superposi-

tion state ðj0i � j1iÞ= ffiffiffi
2

p
displayed in Fig. 4(b) has a finite

mean amplitude which leads to the finite center of mass of
the distribution. Still, negative values in the distribution
persist, illustrating the quantum coherence between the j0i
and j1i state. We have also varied the relative phase � of
the superposition states and have observed the expected
rotation of the Wigner function (data not shown).

In summary, we have measured the moments of itinerant
single microwave photons and small coherent fields up to
fourth order using linear amplification, quadrature ampli-
tude detection, and efficient data analysis. We have imple-
mented a method to separate the quantum signal from the
amplifier noise in a measurement setup with only one
detection channel. We believe that propagating micro-
waves will be investigated more intensely in the context
of future quantum optics and also quantum information
processing experiments [27] where low noise parametric

amplifiers [28–30] have the potential to significantly im-
prove the detection efficiency.
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Note added in proof.—A different method was recently

used to obtain a similar state reconstruction [31].
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