Experimental Violation of Bell Inequalities

QSIT, Paper presentation
EPR Paradox: Is the world quantum?

- **EPR 1935** Assumption: A measurement reveals a physical property “Local realism"
- **EPR**: Quantum mechanics not complete
- **Later**: Hidden local variables as alternative?
- **Bell 1965** provided idea for ultimate proof
- **Aspect 1982** performed the first measurement
Outline

- **Introduction, Theory**
 - EPR Paradox
 - Bell inequalities
- **Loopholes**
 - Angular correlation, Locality, Detection
 - Different setups
- **Implementation**
 - Experimental setup
 - Results
- **Conclusion**
EPR vs Bell

\[|\Psi^-\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) = \frac{1}{\sqrt{2}} (|DA\rangle - |AD\rangle) \]

\[a \to B = (0,1) \]
\[a' \to B = (D,A) \]

No interaction

measure correlation

\[|H\rangle = |0\rangle \]
\[|A\rangle \]
\[|V\rangle = |1\rangle \]
\[|D\rangle \]
Bell Inequalities Contradiction Measurement

Alice
= a, a'

Bob
b, b' =

choose φ
Bell Inequalities - CHSH version

Correlation coefficient

\[E(\alpha, \beta) = P_{\text{same}}(\alpha, \beta) - P_{\text{diff}}(\alpha, \beta) \]
\[= P_{++} + P_{--} - P_{+-} - P_{-+} \]

Bell signal

\[S = E(a, b) - E(a, b') + E(a', b) + E(a', b') \]
\[= A(a)B(b) - A(a)B(b') + A(a')B(b) + A(a')B(b') \]
\[= A(a)(B(b) - B(b')) + A(a')(B(b) + B(b')) \]

Consider only extreme cases:

\[E(a, b) = \int A(a|\lambda) \cdot B(b|\lambda) \rho(\lambda) d\lambda \]
\[= A(a|\lambda) \cdot B(b|\lambda) \]
\[= \pm 1 \text{ CLASSICALLY} \]

hidden variable \(\lambda \)

\[|\Psi^-\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \]
\[= \frac{1}{\sqrt{2}}(|DA\rangle - |AD\rangle) \]
Bell Inequalities - CHSH version

Correlation coefficient

$$E(\alpha, \beta) = P_{\text{same}}(\alpha, \beta) - P_{\text{diff}}(\alpha, \beta)$$

$$= P_{++} + P_{--} - P_{+-} - P_{-+}$$

Bell signal

$$S = E(a, b) - E(a, b') + E(a', b) + E(a', b')$$

$$= A(a)B(b) - A(a)B(b') + A(a')B(b) + A(a')B(b')$$

$$= A(a)(B(b) - B(b')) + A(a')(B(b) + B(b'))$$

CLASSICALLY

One of the two has to be 0

$$|S| \leq 2$$

QUANTUM MECHANICS

It depends on A

$$|S| \leq 2\sqrt{2}$$

$$|\Psi^-\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

$$= \frac{1}{\sqrt{2}}(|DA\rangle - |AD\rangle)$$

$$|H\rangle = |0\rangle$$

$$|A\rangle$$

$$|b\rangle$$

$$|b'\rangle$$

$$|D\rangle$$

$$|V\rangle = |1\rangle$$
Bell Inequalities - CHSH version

Correlation coefficient

\[E(\alpha, \beta) = P_{\text{same}}(\alpha, \beta) - P_{\text{diff}}(\alpha, \beta) \]

\[= P_{++} + P_{--} - P_{+-} - P_{-+} \]

Bell signal

\[S = E(a, b) - E(a, b') + E(a', b) + E(a', b') \]

\[E(\alpha, \beta) = \langle \alpha, \beta \rangle \]

\[= \langle \psi | \alpha \beta | \psi \rangle \]

\[= \ldots \]

\[= -\cos(\alpha, \beta) \]

\[|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \]

\[= \frac{1}{\sqrt{2}}(|DA\rangle - |AD\rangle) \]

\[|H\rangle = |0\rangle \]

\[|A\rangle \]

\[|V\rangle = |1\rangle \]

\[|b\rangle \]

\[\angle 2\varphi \]

QUANTUM MECHANICS

It depends on A

\[|S| \leq 2\sqrt{2} \]
Bell Inequalities Violation Measurement

- Principle of measurement setup:
Loopholes

- [...] (the derivation) is based on two assumptions, which, if not met, allow an experiment to return a Bell violation even for a classically predetermined process [...]

- Those assumptions are called Loopholes.

- For photon systems: 3 kinds of loopholes
 - Angular correlation loophole (generation)
 - Detection loophole
 - Locality loophole
Angular correlation loophole

- Generation of entangled photons
 - 2 laser excitation of calcium atoms
 - cascade emission of entangled photons
 - poor angular correlation

- Modern experiments
 - generation via parametric down-conversion in non-linear material such as BBO (barium beta bromate)
 - loophole closed
Locality loophole

- Measurement time greater than the time it would take the photons pair to communicate information about the state state

- Loophole closed by space-like separation
 - faster detection
 - greater distance between detection locations
 - \(d > c \cdot t_{\text{meas}} \)

- Latest improvements: random polarization change during measurement
Detection loophole

- Arises due to low detection efficiency of single-photon detectors
 - for early experiments: between 5% and 20%
 - a lot of photons remain undetected

- **Fair-sampling assumption:**
 - fraction of detected pairs is representative for the whole ensemble of pairs

- Remains the most important loophole which has not been completely resolved for photonic systems
Various measurement setups

- **Photon** based systems
 - **Pro:** fast travel thus enabling the independent measurement of the 2 quantum systems => locality loophole closed
 - **Contra:** fast and accurate detection not reached yet
 - outlook: superconducting nanowire NbN detectors 67% efficiency

- **Other** systems
 - i.e.: ions, Josephson junction
 - **Pro:** nearly perfect detection
 - **Contra:** hard to separate the two Qubits
 - ongoing research, i.e. separate Josephson junction
Alternative measurement setups

- Additional systems:
 - neutrons
 - K Mesons, B Mesons
 - atomic systems

- Loophole-free systems
 - those are often mixed systems
 - take advantage of different systems
 - only “proposals” so far
Violation of Bell’s Inequality under Strict Einstein Locality Conditions

Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Weinfurter, and Anton Zeilinger
Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
(Received 6 August 1998)

- Bell Inequality Violation Measurement with photons
- Main aim: closing locality loophole

Bell Inequality Violation Measurement with photons

Main aim: closing locality loophole

\[\text{400 m} \quad (1.3 \mu s) \]
Setup: Overview

- Sending entangled photon pairs through single-mode glass fibers to spatially separated regions (400 m)
- Choosing the measurement axes via physical random-number generators
- Changing the measurement axes via electro-optic modulators
- Storing the data locally together with the measurement time
Setup: Overview

- **Alice**
 - Source
 - Glass Fibers

- **Bob**
 - Interference Filters
 - Logic Circuits
 - Polarizer
 - Electro-Optic Modulator
 - Amplifier
 - Random Number Generator
 - Time-Tags
Setup: Details

Creation of the photons:

- degenerate type II parametric down-conversion (emits entangled photons with perpendicular polarization)
- BBO crystal (Beta Barium Borate; non-linear crystal), shined at with 400 mW of 351 nm light from argon-ion laser
Setup: Details

Random Number Generation:

- light-emitting diode
- beam splitter
- photomultipliers & electric circuit
- detection window / max. frequency: 2 ns / 500 MHz
- incl. modulation to uniform distribution: 10 MHz
Setup: Details

Setting the measurement axes:

- electro-optic modulator: rotation of polarization proportional to the applied voltage
- Frequencies: DC to 30 MHz
- optic axis at 45 degrees to the polarizer ahead
- depending on the random number input: switch between 0 and 45 degrees rotation of polarization
Setup: Details

Detection:

- polarizer beam splitter
- silicon avalanche photodiodes: 10’000 - 15’000 counts / s, dark count of a few 100 / s
- selection of good inputs (right setup switching time)
- local time-tagged recording of output & switch positions: 75 ps resolution, 0.5 ns accuracy
- overall dead-time of detection channel: 1 µs
Measurement Results

QM maximum

\[\varphi = \pi/8 \]
\[E(a, b) = -\frac{1}{\sqrt{2}} \]
\[E(a', b) = -\frac{1}{\sqrt{2}} \]
\[S = -2\sqrt{2} \]

\[|H\rangle = |0\rangle \]
\[|A\rangle \]
\[|V\rangle = |1\rangle \]
Measurement Results

- SNR > 100
- coincidence window 6 ns
- visibility of correlations: $\approx 97\%$
- 14’700 coincidence events in 10s
- Total detection / collection efficiency: 5 %
Results

- Bell inequality violation: 2.73 ± 0.02
- Total detection / collection efficiency: 5 %
- Loopholes?
 - Detection Loophole: ✗ (5 %)
 - Locality Loophole: ✓ (1.3 μs vs. ≈ 100 ns)
Summary

- **Theoretical Background:**
 - EPR Paradox
 - Bell Inequalities

- **Loopholes & Physical Systems**

- **Experimental Implementation:**
 - Detailed Setup
 - Bell inequality violation: 2.73 ± 0.02
 - Detection Loophole: \times (5 %)
 - Locality Loophole: $\sqrt{1.3 \, \mu s \text{ vs. } \approx 100 \, \text{ns}}$
Thank you for your attention.
References

Setup: Details

Transmission:

- telescope to narrow the beam
- half-wave plate & compensator crystals to correct output to desired state:
 \[|\psi\rangle = \frac{1}{\sqrt{2}} (|H\rangle_1 |V\rangle_2 + e^{i\phi} |V\rangle_1 |H\rangle_2) \]
 with \(\phi = \pi \)
- manual fiber polarization controllers to correct unitary polarization transformations in fiber
Hg Atom Based Systems