In Kapitel 10 beim Lösen der Schrödinger-Gleichung für den harmonischen Oszillator sowie in Kapitel 11 beim Lösen der Schrödinger-Gleichung für das Wasserstoffatom treten verschiedene aus der Mathematik bekannte Differentialgleichungen auf. An dieser Stelle fassen wir die Eigenschaften der Lösungen dieser Differentialgleichungen zusammen.
Die Hermite-Polynome
treten im Zusammenhang mit den Lösungen für die
Wellenfunktion des harmonischen Oszillators auf (siehe Abschnitt 10.2.4) und sind
nach (10.45) gegeben durch
Die Legendre-Polynome
treten als Basis für die zugeordneten
Legendre-Polynome (siehe Abschnitt I.3) auf und sind nach (11.34) gegeben
durch
wobei
Die zugeordneten
treten im Zusammenhang mit den Lösungen
für die Polarkomponente
der Wellenfunktion
des
Wasserstoffatoms auf (siehe Abschnitt 11.2.1) und sind nach (11.30) gegeben
durch
wobei
die Legendre-Polynome sind (siehe Abschnitt I.2).
Die Laguerre-Polynome
treten als Basis für die zugeordneten Laguerre-Polynome
(siehe Abschnitt I.5) auf und sind gegeben durch
Die zugeordneten Laguerre-Polynome
treten im Zusammenhang mit den
Lösungen für den radialen Anteil
der Wellenfunktion
des
Wasserstoffatoms auf (siehe Abschnitt 11.2.3) und sind gegeben durch
wobei
die Laguerre-Polynome sind (siehe Abschnitt I.4).
Die Kugelfunktionen
treten im Zusammenhang mit den Lösungen
für den winkelabhängigen Anteil der Wellenfunktion
des
Wasserstoffatoms auf (siehe Abschnitt 11.2.2) und sind nach (11.38) gegeben
durch

wobei
Dabei entspricht
dem Winkel zwischen den beiden Richtungen
und
.