Quantum Device Lab

>> back

Quantum Systems
for Information Technology


ETH Logo

Winter Term 2009

Student Presentations

For the final five weeks of the lecture course, students will be giving presentations in pairs on current experimental research in Quantum Information Processing. A calendar and a list of references for the presentation topics can be found below. Each presenter will be assessed by the other students using this evaluation form, so that you can find out for yourselves how good your presentation skills are, and how you might improve them.

Preliminary Calendar:
16.11.2009Anna Amanatidou & Susanne DroescherSuperconducting circuits Ipdf
16.11.2009Kiryl Pakrouski & Marek PechalSuperconducting circuits IIpdf
23.11.2009Felix Geldmacher & Tobias RosskopfSpin qubits in quantum dots Ipdf
23.11.2009Juan Osorio & Adrian StalderSpin qubits in quantum dots IIpdf
30.11.2009Camille Estienne & Bruno KuengRealization of gates in ion trapsI,II
07.12.2009Helena Knowles & Gabriel MeierExperimental teleportation
07.12.2009Dario Egloff & Christian GrossViolation of Bell inequalities
14.12.2009Theodore Choi & Tobias SchochAlgorithms in NMR I
Superconducting Circuits - Introductory/Review Articles
Clarke, J & Wilhelm, FK
Superconducting quantum bits
Nature 453, 1031 (2008)

Schoelkopf, RJ & Girvin, SM
Wiring up quantum systems
Nature 451, 664 (2008)

Devoret, MH; Martinis, JM
Implementing Qubits with Superconducting Integrated Circuits
Quant. Inf. Proc. 3 163 (2004)

You, JQ; Nori, F
Superconducting Circuits and Quantum Information
Physics Today 58 42 (2005)

Semiconductor Quantum Dots - Introductory/Review Articles
Hanson, R & Awschalom, DD
Coherent manipulation of single spins in semiconductors
Nature 453, 1043 (2008)

Hanson, R; Kouwenhoven, LP; Petta, JR; et al.
Spins in few-electron quantum dots
Reviews of Modern Physics 79, 1217 (2007)

Ion Traps - Introductory/Review Articles
Blatt and Wineland
Entangled states of trapped atomic ions
Nature 453, 1008 (2008)

NMR - Introductory/Review Articles
Gershenfeld and Chuang
Bulk Spin-Resonance Quantum Computation
Science 275, 350 (1997)

Vandersypen and Chuang
NMR techniques for quantum control and computation
Rev. Mod. Phys. 76, 1037 (2004)

Topic references:
1. Local coupling of superconducting qubits
Plantenberg JH; de Groot PC; Harmans CJPM; et al.
Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits
Nature 447, 836 (2007)

Yamamoto, T; Pashkin, YA; Astafiev, O; et al.
Demonstration of conditional gate operation using superconducting charge qubits
Nature 425, 941 (2003)

2. Coupling superconducting qubits via a cavity
DiCarlo, L; Chow, J; Gambetta, JM; et al.
Demonstration of two-qubit algorithms with a superconducting quantum processor
Nature 460, 240 (2009)

Hofheinz, M; Wang, H; Ansmann, M; et al.
Synthesizing arbitrary quantum states in a superconducting resonator
Nature 459, 546 (2009)

3. Control of single spin qubits in quantum dots
Nowack, KC; Koppens, FHL; Nazarov, YV & Vandersypen, LMK
Coherent control of a single electron spin with electric fields
Science 318, 1430 (2007)

Koppens, FHL; Buizert, C; Tielrooij, KJ; et al.
Driven coherent oscillations of a single electron spin in a quantum dot
Nature 442, 766 (2006)

4. Implementing gates in quantum dot spin qubits
Petta, JR; Johnson, AC; Taylor, JM; et al.
Coherent manipulation of coupled electron spins in semiconductor quantum dots
Science 309, 2180 (2005)

5. High fidelity quantum gates in trapped ions
Benhelm, J; Kirchmair, G; Roos, CF & Blatt R
Towards fault-tolerant quantum computing with trapped ions
Nature Physics 4, 463 (2008)

Schmidt-Kaler, F; Haffner, H; Riebe, M; et al.
Realization of the Cirac-Zoller controlled-NOT quantum gate
Nature 422, 408 (2003)

Leibfried, D; DeMarco, B; Meyer, V; et al.
Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate
Nature 422, 412 (2003)

6. Realizations of the quantum Toffoli gate
Monz, T; Kim, K; Haensel, W; et al.
Realization of the quantum Toffoli gate with trapped ions
Phys. Rev. Lett. 102, 040501 (2009)

Lanyon, BP; Barbieri, M; Almeida, MP; et al.
Simplifying quantum logic using higher dimensional Hilbert spaces
Nat. Phys. 5, 134 (2009)

7. Experimental demonstrations of teleportation
Riebe, M; Haffner, H; Roos, CF; et al.
Deterministic quantum teleportation with atoms
Nature 429, 734 (2004)

Barrett, MD; Chiaverini, J; Schaetz, T; et al.
Deterministic quantum teleportation of atomic qubits
Nature 429, 737 (2004)

Nielsen, MA; Knill, E; Laflamme, R
Complete quantum teleportation using nuclear magnetic resonance
Nature 396, 52 (1998)

Bouwmeester, D; Pan, J-W; Mattle, K; et al.
Experimental quantum teleportation
Nature 390, 575 (1997)

8. Experimental violations of Bell inequalities
Ansmann, M; Wang, H; Bialczak, RC; et al.
Violation of Bell's inequality in Josephson phase qubits
Nature 461, 504 (2009)

Matsukevich, D. N.; Maunz, P.; Moehring, D. L.; et al.
Bell inequality violation with two remote atomic qubits
Phys. Rev. Lett. 100, 150404 (2008)

Rowe, A; Kielpinski, D; Meyer, V; et al.
Experimental violation of a Bell's inequality with efficient detection
Nature 409, 791 (2002)

Weihs, G; Jennewein, T; Simon, C; et al.
Violation of Bell inequality under strict Einstein locality conditions
Phys. Rev. Lett. 81, 5039 (1998)

Aspect, A; Grangier, P; Roger, G
Experimental Realization of EPR-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities
Phys. Rev. Lett. 49, 91 (1982)

9. The Deutsch-Josza algorithm in NMR
Jones, JA; Mosca M; et al.
Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer
J. Chem. Phys. 109, 1648 (1998)

Chuang, IL; Vandersypen, LMK; Zhou, X; et al.
Experimental realization of a quantum algorithm
Nature 393, 143 (1998)

10. Grover and Shor algorithms in NMR
Vandersypen, LMK; et al.
Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance
Nature 414, 883 (2002)

Jones, JA; Mosca, M; Hansen, RH; et al.
Implementation of a quantum search algorithm on a quantum computer
Nature 393, 344 (1998)

Andreas Wallraff


>> ETH    >> PHYS    >> SOLID    >> home   >> back