QSIT (FS 2013) - Students' presentations

Students will give presentations in pairs on current experimental research in Quantum Information Processing. Each group has 30 min for the presentation plus 15 minutes for questions. A list of references for the presentation topics can be found below. Each presenter will be assessed by the other students, so that you can find out for yourselves how good your presentation skills are, and how you might improve them. The evaluation form is available here, information slides can be downloaded here.


 

Date

#

Topic

Name(s)

03-05-2013  1 Superconducting circuits: Toffoli gate and error correction (pdf) Silvia Ruffieux, Florian Lüthi
03-05-2013  2 Superconducting circuits: Grover algorithm (pdf) Sergio Solorzano, Folkert de Vries
10-05-2013  3 Trapped Ions: Digital quantum simulation (pdf) Edwin Dornbierer, Margarita Jimenez
10-05-2013  4 Trapped Ions: Quantum networks (pdf) Anna Hambitzer, Matteo Fadel
17-05-2013  5 Quantum Dots: Implementing gates in quantum dot spin qubits (pdf) Theodore Walter, Samer Afach
17-05-2013  6 Quantum Dots:  Coupling of quantum dots to a resonator (pdf)  Guest: Tobias Frey
24-05-2013  7 Photons: Experimental violation of Bell inequalities (pdf) Dominik Waldburger, Mirjan Weilenmann
24-05-2013  8 Photons: Experimental demonstrations of teleportation (pdf) Nikola Dordevic, Manuel Chinotti
31-05-2013  9 NMR: Shor algorithms – Theoretical background (pdf, notes) Damian Steiger
31-05-2013  10 NMR: Shor algorithms – Experimental realization (pdf) Andrin Doll


Superconducting Circuits - Introductory/Review Articles

Clarke, J. & Wilhelm, F.K.
Superconducting quantum bits
Nature 453, 1031 (2008)

Schoelkopf, R.J. & Girvin, S.M.
Wiring up quantum systems
Nature 451, 664 (2008)

Devoret, M.H. & Martinis, J.M.
Implementing Qubits with Superconducting Integrated Circuits
Quant. Inf. Proc. 3, 163 (2004)


Semiconductor Quantum Dots - Introductory/Review Articles

Hanson, R. & Awschalom, D. D.
Coherent manipulation of single spins in semiconductors
Nature 453, 1043 (2008)

Hanson, R., Kouwenhoven, L. P., Petta, J. R. et al.
Spins in few-electron quantum dots
Reviews of Modern Physics 79, 1217 (2007)

 

Ion Traps - Introductory/Review Articles

Leibfried, D., Blatt, R., Monroe, C. and Wineland D.
Quantum dynamics of single trapped ions
Review of Modern Physics 75 , 281 (2003)

Blatt, R. and Wineland, D.
Entangled states of trapped atomic ions
Nature 453, 1008 (2008)

 

NMR - Introductory/Review Articles

Gershenfeld, N. A. and Chuang, I. L.
Bulk Spin-Resonance Quantum Computation
Science 275, 350 (1997)

Vandersypen L. M. K. and Chuang, I. L.
NMR techniques for quantum control and computation
Review of Modern Physics 76, 1037 (2004)

 

Material for Presentations


1. Superconducting circuits: Toffoli gate and error correction

Fedorov, A., Steffen, L., Baur M., da Silva, M. & Wallraff A.
Implementation of a Toffoli Gate with Superconducting Circuits
Nature 481, 170 (2012)

Reed, M. D., DiCarlo, L., Nigg, S. E. et al.
Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits.
Nature 482,382 (2012)

2. Superconducting circuits: Grover algorithm

DiCarlo, L; Chow, J; Gambetta, JM; et al.
Demonstration of Two-Qubit Algorithms with a Superconducting Quantum Processor.

Nature 460, 240 (2009)

A. Dewes, R. Lauro, F. R. Ong, V. Schmitt, P. Milman, P. Bertet, D. Vion and D. Esteve.
Quantum Speeding-Up of Computation Demonstrated in a Superconducting Two-Qubit Processor.
Phys. Rev. B 85, 140503(R)

3. Trapped Ions: Digital quantum simulation

Benhelm, J., Kirchmair, G., Roos, C. F. & Blatt R.
Towards fault-tolerant quantum computing with trapped ions.
Nature Physics 4, 463 (2008)

Lanyon, B. P., Hempel, C., Nigg, D., Müller, M. et al.
Universal Digital Quantum Simulation with Trapped Ions.
Science 334, 57 (2011)

4. Trapped Ions: Quantum networks

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe
Entanglement of single-atom quantum bits at a distance.

Nature
449, 68 (2007)

L. Slodic(ka, G. Hétet, N. Röck, P. Schindler, M. Hennrich & R. Blatt
Atom-Atom Entanglement by Single-Photon Detection.
Phys. Rev. Lett. 110, 083603 (2013)

5. Quantum Dots: Implementing gates in quantum dot spin qubits

Petta, J. R., Johnson, A. C., Taylor, J. M. et al.
Coherent manipulation of coupled electron spins in semiconductor quantum dots.
Science 309, 2180 (2005)

Shulman, M. D., Dial, O. E., Harvey, S. P., Bluhm, H., Umansky, V. & Yacoby, A.
Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits.
Science 336, 202 (2012)

6. Quantum Dots: Coupling of quantum dots to a resonator

Frey, T., Leek, P. J., Beck, M., Blais, A., Ihn, T., Ensslin, K. and Wallraff A.
Dipole coupling of a double quantum dot to a microwave resonator.

Phys. Rev. Lett. 108, 046807 (2012)

Petersen, K. D., McFaul L. W., Schroer, M. D., Jung, M., Taylor, J. M., Houck, A. A. & Petta J. R.
Circuit Quantum Electrodynamics with a Spin Qubit.

Nature 490, 380 (2012)

7. Photons: Experimental violation of Bell inequalities with photons

Aspect, A., Grangier, P., Roger, G.
Experimental Realization of EPR-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities.

Phys. Rev. Lett. 49, 91 (1982)

Weihs, G., Jennewein, T., Simon, C. et al.
Violation of Bell inequality under strict Einstein locality conditions.

Phys. Rev. Lett. 81, 5039 (1998)

For comparison to atomic systems and superconducting qubits see also:

Matsukevich, D. N., Maunz, P., Moehring, D. L. et al.
Bell inequality violation with two remote atomic qubits.
Phys. Rev. Lett. 100, 150404 (2008)

Ansmann, M., Wang, H., Bialczak, R. C. et al.
Violation of Bell's inequality in Josephson phase qubits.
Nature 461, 504 (2009)

8. Photons: Experimental demonstrations of teleportation with photons

Bouwmeester, D., Pan, J.-W., Mattle, K. et al.
Experimental quantum teleportation.

Nature 390, 575 (1997)

Ma, X.-S., Herbst, T., Scheidl, T. et al.
Quantum teleportation over 143 kilometres using active feed-forward.
Nature 489, 269 (2012)

Yin, J.et al.
Quantum teleportation and entanglement distribution over 100-kilometre free-space channels
.
Nature488,185(2012)

For comparison to atomic systems and superconducting qubits see also:

Barrett, M. D., Chiaverini, J., Schaetz, T. et al.
Deterministic quantum teleportation of atomic qubits.

Nature 429, 737 (2004)

L. Steffen, et al.
Realization of Deterministic Quantum Teleportation with Solid State Qubits
.
arXiv:1302.5621

9. NMR: Shor algorithms – Theoretical background

Shor Pieter W.
Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.

arXiv:quant-ph/9508027 (1995)

Nielsen, Michael A. and Chuang, Isaac L.
Quantum Computation and Quantum Information.
Cambridge University Press (2000)

10. NMR: Shor algorithms – Experimental realization

Vandersypen, L. M. K. et al.
Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance.

Nature 414, 883 (2001)

For comparison to optical photons and superconductin qubits see also:

Erik Lucero et al.
Computing prime factors with a Josephson phase qubit quantum processor.

Nature Physics 8, 719 (2012)

Alberto Politi, Jonathan C. F. Matthews, and Jeremy L. O'Brien
Shor’s Quantum Factoring Algorithm on a Photonic Chip.
Science 325, 1221 (2009)